
Balancing CPU and Network in the Cell Distributed B-Tree Store

Christopher Mitchell Kate Montgomery Lamont Nelson Siddhartha Sen∗ Jinyang Li

New York University ∗Microsoft Research

{cmitchell, kem493, lamont.nelson, jinyang}@cs.nyu.edu, sidsen@microsoft.com

Abstract

In traditional client-server designs, all requests are pro-

cessed at the server storing the state, thereby maintaining

strict locality between computation and state. The adop-

tion of RDMA (Remote Direct Memory Access) makes

it practical to relax locality by letting clients fetch server

state and process requests themselves. Such client-side

processing improves performance when the server CPU,

instead of the network, is the bottleneck. We observe that

combining server-side and client-side processing allows

systems to balance and adapt to the available CPU and

network resources with minimal configuration, and can

free resources for other CPU-intensive work.

We present Cell, a distributed B-tree store that com-

bines client-side and server-side processing. Cell dis-

tributes a global B-tree of “fat” (64MB) nodes across

machines for server-side searches. Within each fat node,

Cell organizes keys as a local B-tree of RDMA-friendly

small nodes for client-side searches. Cell clients dynami-

cally select whether to use client-side or server-side pro-

cessing in response to available resources and the cur-

rent workload. Our evaluation on a large RDMA-capable

cluster show that Cell scales well and that its dynamic

selector effectively responds to resource availability and

workload properties.

1 Introduction

In the traditional client-server design, the server does

the vast majority of the computation, storing state and

processing operations by performing computation over

the state. Clients simply send RPC requests and receive

replies from the server. Maintaining strict locality of

computation and state is crucial for performance when

the cost of communication is high.

Commodity clusters have recently started to embrace

ultra-low-latency networks with Remote Direct Memory

Access (RDMA) support [3, 1, 7], just as in-memory

storage has become practical and performant [34, 37,

31, 45]. RDMA is supported over InfiniBand or over

Ethernet via RoCE [46, 49], each of which offers high

throughput (20-100 Gbps) and low round-trip latency (a

few microseconds). With RDMA, a machine can directly

read or write parts of a peer’s memory without involving

the remote machine’s CPU or the local kernel; traditional

message passing can also still be used.

As a result, RDMA has drastically lowered the cost

of communication, thereby permitting an alternative sys-

tem design that relaxes locality between computation and

state. Clients can process requests by fetching server

state using RDMA and performing computation on the

state themselves [7, 32]. Client-side processing con-

sumes similar total CPU resources to server-side process-

ing, except with the CPU load shifted to the clients. How-

ever, this flexibility comes at a cost: fetching server state

consumes extra network resources, which may become

a bottleneck. For datacenters with capable networks, the

bottleneck network resource is each server’s NIC(s).

Several existing in-memory distributed storage sys-

tems utilize RDMA-capable networks; all are unsorted

key-value stores that exclusively use client-side or

server-side processing. For example, Pilaf [32] and

FaRM [7] rely on client-side processing for all read op-

erations. HERD [22] uses only server-side processing.

None of these solutions is satisfactory: we recognize that

practical in-memory storage systems exist on a contin-

uum between being CPU-bound and network-bound that

also shifts as workloads change. Therefore, we explore

a hybrid approach that augments server-side process-

ing with client-side operations whenever bypassing the

server CPU leads to better performance.

Modern bare-metal servers are usually equipped with

as many CPU cores as necessary to saturate the server’s

NIC [2]. Nevertheless, there are several common sce-

narios where servers’ CPUs can become bottlenecked,

causing client-side processing to be more desirable. First,

when deploying a distributed storage system in the cloud,

the virtual machines’ CPUs must be explicitly rented.

As a result, one usually reserves a few CPU cores that

are sufficient for the average load in order to save costs.

Doing so leaves servers overloaded during load spikes1.

Second, a networked system may be deployed in a shared

cluster where the same physical machines running the

servers also run other CPU-intensive jobs, including

storage-related application logic, to maximize cluster uti-

lization. In this case, one also does not want to assign

1One can dynamically add more server instances on-the-fly in case

of server overload. However, this would be too slow to handle load

spikes of a few seconds.
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more CPU cores than necessary for the servers to handle

the average load, thereby also resulting in server CPU

overload during load spikes.

In this paper, we investigate how to balance CPU

and network by building a distributed, in-memory B-

tree store, called Cell. We choose a B-tree as a case

study system because of its challenges and importance:

as a sorted data structure, B-trees serve as the storage

backend for distributed databases. A distributed B-tree

spreads its nodes across many servers, and supports get,

put, delete, and range operations. The key component

underlying all operations is search, i.e. traversing the B-

tree: Cell combines client-side and server-side process-

ing for B-tree searches. Cell builds a hierarchical B-tree:

Cell distributes a B-tree of “fat” nodes (meganodes), each

containing a local B-tree of small nodes, across server

machines. This hierarchical design enables simultane-

ous server-side search through meganodes and efficient

client-side search through small nodes. Our architecture

permits reliable lock-free search with caching even in the

face of concurrent writes and structural changes to the

tree. Our Cell prototype also provides distributed trans-

actions on top of the B-tree using traditional techniques;

we omit a discussion of this feature due to scope.

In order to arrive at the best balance between using

client-side and server-side processing, Cell needs to dy-

namically adjust its decision. Ideally, when server CPUs

are not saturated, Cell clients should choose server-side

searches. When a server becomes overloaded, some but

not all clients should switch to performing client-side

searches. The goal is to maximize the overall search

throughput. We model system performance using ba-

sic queuing theory; each client independently estimates

the “bottleneck queuing delays” corresponding to both

search types, then selects between server-side and client-

side search accordingly. This dynamic selection strategy

achieves the best overall throughput across a spectrum

of different ratios of available server CPU and network

resources.

We have implemented a prototype of Cell running on

top of RDMA-capable InfiniBand. Experiments on the

PRObE Nome cluster show that Cell scales well across

machines. With 16 server machines each consuming 2

CPU cores, Cell achieves 5.31 million ops/sec combin-

ing both server-side and client-side searches, 65% faster

than server-side search alone while still leaving the re-

maining 6 cores per machine for CPU-intensive applica-

tion logic. More importantly, Cell balances servers’ CPU

and network resources, and is able to do so in different

environments. Cell clients make good dynamic decisions

on when to use client-side searches, consistently match-

ing or exceeding the best manually-tuned fixed percent-

ages of client-side and server-side searches or either of

the search types alone. The system responds quickly (in

< 1s) and correctly to maintain low operation latency in

the face of load spikes and tree structure modifications.

We present Cell’s design in Section 2 and describe

implementation-specific details in Section 3. We thor-

oughly evaluate Cell’s performance and design choices

in Section 4. We explore related systems in Section 5.

2 Cell Design
Cell provides a sorted in-memory key-value store in the

form of a distributed B-tree. In this section, we give an

overview of Cell (2.1) and then discuss the main com-

ponents of our design: our B-tree structure (2.2) and our

hybrid search technique (2.3, 2.5).

2.1 Overview

In designing the Cell distributed B-tree store, we make

two high-level design decisions: (1) support both client-

side and server-side operations; (2) restrict client-side

processing to read-only operations, including B-tree

searches and key-value fetches. (1) is made possible by

a hierarchical B-tree of B-trees. (2) is logical because

practical workloads are search- and read-heavy [34], and

client-side writes would involve much more complexity.

As Section 4.5 shows, we can reap the benefits of client-

side processing across a variety of workloads with dif-

ferent fractions of read vs. write operations. Cell’s ba-

sic design faces two novel challenges: how to ensure the

correctness of RDMA searches during concurrent server-

side modification, and when should clients prefer client-

side over the default server-side processing? Although a

large body of existing work explores concurrent B-trees,

these works assume that servers’ CPUs still have full

control over access to the servers’ data. With RDMA, the

storage system must provide its own techniques to syn-

chronize reads and writes, or at least ensure that reads are

performed over consistent data.

Cell organizes data in a hierarchical B-tree of B-

trees to ensure that both server-side and RDMA-based

searches are efficient. At the cluster level, Cell builds

a B-tree out of fat nodes called meganodes, containing

tens or hundreds of megabytes of structural metadata.

Meganodes are spread across the memory of the servers

in the cluster. Within each meganode, Cell builds a lo-

cal B-tree consisting of small nodes (e.g. 1KB). The

local B-tree allows a server to search efficiently for a

key within a meganode, while simultaneously allow-

ing remote clients to search within a meganode using a

small number of efficient RDMAs. Other systems like

BigTable [5] only support server-side search, so they

can use different searchable local data structures such as

skiplists that would require many more roundtrips to ac-

cess remotely.

We adopt the common practice of storing the data of

a B-tree at its leaf level. Thus, the leaf meganodes of the

tree store local pointers to data while the internal megan-
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Figure 1: Cell’s architecture and interactions (Section 2).

odes store remote pointers to other meganodes on remote

machines. All pointers consist of a region ID and offset.

Each server’s in-memory state includes multiple large

contiguous memory areas (e.g. 1GB) containing node

regions that hold meganodes or extents regions holding

key-value data. All clients and servers maintain a cache

of the global region table that maps region IDs to the IP

addresses of the responsible machines. Servers also ac-

tively exchange region information with each other asyn-

chronously. We assume that server membership is main-

tained reliably using a service like Zookeeper [18].

As shown in Figure 1, clients communicate with

servers to perform B-tree operations including search

(contains), get (read), put (insert/update), and delete. Of

these operations, search and get may be performed by

clients via RDMA. Servers also communicate with each

other to grow and maintain the distributed B-tree. The

coordination between servers adds a level of complex-

ity not present in prior RDMA-optimized systems like

FaRM [7] or Pilaf [32]. However, we minimize this com-

plexity by carefully designing our B-tree, discussed next.

2.2 Server-Side B-tree Operations

Cell uses a type of external B-tree called a B-link

tree [25]. We use the same structure at both the meganode

scope and within each meganode, as illustrated in Fig-

ure 2. B-link trees offer much higher concurrency than

standard B-trees due to two structural differences: each

level of the tree is connected by right-link pointers, and

each node stores a max key which serves as an upper

bound on the keys in its subtree. (We also store a min

key to cope with concurrent RDMA reads; see 2.3.) Sa-

giv [38] refined the work of Lehman and Yao [25] into

an algorithm that performs searches lock-free, insertions

by locking at most one node at a time, and deletions by

locking only one node. The lack of simultaneous locking

makes the algorithm well-suited to distributed and con-

current settings [19, 30].

We follow Sagiv’s algorithm when operating within

a meganode. A search for a key follows child pointers

and, if necessary, right-link pointers until the correct leaf

node is reached. Range queries are implemented by fol-

lowing right links at the leaf level. Insertions and dele-

Figure 2: The structure of Cell’s data store, a B-link tree of

B-link trees. Each individual meganode contains a complete

level-linked tree; the meganodes are also level-linked. The root

meganode contains the root node (R). The leaves (L) of the

bottom meganodes point to key-value data stored in the local

extents region of that machine.

tions begin with a search to find the correct leaf node.

If an insertion causes a leaf node L to split (because it

is full), we lock L long enough to create a new node

L′ containing roughly half of L’s contents, and set L’s

right-link pointer to L′. The right link ensures that con-

current searches can reach L′ (guided by the max key of

L) even if it has no parent yet. The split key is then in-

serted into the parent as a separate, decoupled operation

that may propagate further up the tree. Deletions simply

remove the key from its leaf node under a lock. We avoid

multi-lock compaction schemes and deletion rebalancing

to improve concurrency [35, 12]; this practice has been

shown to have provably good worst-case properties [40].

To limit overhead from underfilled leaf nodes, a desired

ratio of tree size to total key-value data can be selected.

The tree can then be periodically rebuilt offline without

sacrificing liveness, by checkpointing the tree, rebuild-

ing it with insertions into an empty tree, then replaying

a delta of operations performed since the checkpoint was

recorded and swapping the live and offline trees.

We extend Sagiv’s algorithm to server-side operations

in our meganode structure.

(Server-side) search and caching: To search for a

key-value entry, clients iteratively traverse the tree one

meganode at a time by sending search requests to the

appropriate servers, starting at the server containing the

root node R (Figure 2). Each server uses Sagiv’s al-

gorithm to search within meganode(s) until it reaches

a pointer that is not local to the machine. This remote

pointer is returned to the client, which continues the

search request at the pointer target’s server. When a leaf

node is reached, the server returns the key-value pair

from its extents region to the client. To bootstrap the

3



Internal Node 

Leaf Node 

Version ...Max 

Key
Min 

Key
Key Region 

ID
Offset

Key
Virtual 

Address
Size CRC

Valid Version...

Version ...Max 

Key
Min 

Key
Valid Version...

Figure 3: The structure of internal and leaf meganodes in Cell’s

B-link trees. Each node packs two matching versions, a mini-

mum and maximum key, and zero or more pointers to other

nodes or to extents memory in a block of a few kilobytes.

search, we ensure that a pointer to R is always stored at

offset 0 in the region with the lowest ID across the clus-

ter. We can speed up searches by having clients cache

the depth and key range of meganodes close to the root

because servers provide this metadata with traversal re-

sults. This type of caching is effective because updates in

a B-tree such as ours occur exponentially infrequently in

node height [40].

Deletion: To delete a key-value entry, a client orches-

trates a server-side search for the key, then instructs the

server to delete a leaf node entry according to Sagiv’s

algorithm. Nodes are not compacted to avoid multi-lock

algorithms and maintain concurrency.

Insertion: To insert (or update) a key-value entry, a

client performs a server-side search for the key, then in-

structs the server to insert a leaf node entry according to

Sagiv’s algorithm. As individual nodes fill and split (po-

tentially propagating upwards) the meganode itself may

become full, requiring that it split.

In principle, we could apply Sagiv’s algorithm at the

meganode level as well, but this would require locking

the entire meganode for the duration of the split, block-

ing all other operations. Instead, we use a finer protocol

inspired by Sagiv’s algorithm that allows greater con-

currency. It identifies a split key in a meganode X that

divides it into two halves, Xleft and Xright . Xright is

locked for the duration of the split, but updates can con-

tinue in Xleft . The server copies the nodes in Xright to a

new local or remote meganode asynchronously2. Then, it

locks Xleft long enough to update the right-link pointers

of Xleft along the split boundary to point to the root of

the new meganode. At this point, the meganode structure

is restored as in Figure 2. Lastly, the server invalidates

the old Xright by setting a boolean flag in each node, in-

dicating that the nodes can be reused, and releases the

lock on Xright ’s key range.

A meganode should be split before it becomes too full,

otherwise concurrent updates to Xleft may fail if we run

out of space. Note that client-side searches may occur

throughout the meganode split process. Ensuring their

correctness is subtle, as we discuss in Section 2.3.

2To balance network costs with the desire to balance the tree across

all available servers, Cell favors remote meganodes when few local

meganodes have been used, and local meganodes otherwise.

2.3 Client-Side Search and Caching

Cell organizes each meganode as a local B-link tree in

order to enable client-side searches using RDMA reads.

The search process is similar to the server-side equiva-

lent, except that the client needs to iteratively fetch each

B-tree node using an RDMA read, following child and

right-link pointers, as it traverses a meganode. When the

search terminates at a leaf node, the client attempts one

additional RDMA read to fetch the actual key-value data

from the server’s extent region, or issues an insert or

delete RPC to the server containing the leaf node.

A full-sized 64MB meganode built from 1KB-sized

nodes contains a 5-level local B-link tree. Thus, RDMA

search through a meganode takes up to 5 RTTs while

server-side search requires only one. This is not as bad

as it seems, because: (1) RDMA-enabled networks have

very low RTTs, so the overall client-side search latency

remains small despite the extra roundtrips. (2) The la-

tency overhead pales in comparison to the queuing de-

lay if the server CPU is bottlenecked at high load. To

reduce search roundtrips and ameliorate hotspots at the

root meganode, clients cache fetched nodes. Clients fol-

low the same strategy as for server-side search: only

cache nodes near the root, and if they follow a right-link

pointer, they invalidate any information cached from the

parent node.

Allowing client-side RDMA reads during server-side

tree modifications introduces subtle concurrency chal-

lenges, as Sagiv’s algorithm requires that individual

nodes reads and writes appear atomic. This is easy to en-

force among server-side operations using CPU synchro-

nization primitives. However, no universal primitives ex-

ist to synchronize RDMA reads with the server’s mem-

ory access. To ensure that RDMA reads are consistent,

we use two techniques (see Figure 3):

• We store a version number at the start and end of each

node. To update a node, the server increments both ver-

sion numbers to the same odd value, performs the up-

date, then increments both numbers to the same even

value. Each step is followed by a memory barrier to

flush the cache to main memory. If the RDMA read of

a node is interleaved with the server’s modification of

that node, it will either see mismatched version num-

bers or the same odd value, indicating that the read

must be retried. This method works because in prac-

tice RDMAs are performed by the NIC in increasing

address order3 and because individual nodes have fixed

boundaries and fixed version number offsets.

• Key-value entries are variable size and have no fixed

boundaries. We use the technique proposed in Pi-

laf [32] of storing a CRC over the key-value entry in

3To handle NICs that do not read in increasing address order, we

need to adopt the solution of FaRM [7] of using a version number per

cacheline.

4



the corresponding leaf node pointer. After performing

an RDMA in the extent region, the client checks if the

CRC of the data matches the CRC in the pointer; if not,

the RDMA is retried. Like node modifications, each

key-value write is also followed by a memory barrier.

2.4 Correctness

Cell dictionary operations (search, insert, and delete) are

linearizable [16] so that both server-side and client-side

searches will be correct. We refer readers to §4.2.1 of

Mitchell’s PhD thesis [33] for the proof.

Theorem 1. Every Cell operation on small nodes maps a

good state (in which all previously-inserted data that has

not yet been deleted can be reached via a valid traver-

sal) to another good state. Therefore, by the give-up the-

orem [41], it is linearizable.

If meganodes never split, we can leverage Sagiv’s

proof of correctness [38]. However, it requires that node

reads and writes be atomic, as guaranteed by the design

in the previous section. Therefore, any search through a

Cell store for x, if it terminates, will terminate in the cor-

rect place: the node n | x ∈ keyset(n), where keyset(n)
is the set of keys that are stored in n. Since Cell satisfies

the give-up theorem [41], and all Cell operations map

good states to good states, Cell is linearizable.

The linearizability of operations during meganode

splits is delicate, and requires an additional proof, also

provided in Mitchell’s thesis [33].

Theorem 2. Insert, delete, and search operations remain

linearizable during a meganode split. Insert and delete

operations are blocked during the meganode split, and

proceed correctly once the split is complete. Search oper-

ations can either continue or backtrack correctly during

and after the split. Thus, Cell operations remain lineariz-

able, by Theorem 1.

The state stored in a node n allow multiple copies of a

node to safely temporarily exist. Invalidating all but one

copy of the node before allowing modifications to any

copy of n removes any possible ambiguity in the set of

keys present in Cell. The design for this is presented be-

low. All Cell operations still map good states to good

states as from Theorem 1. Thus, any search through a

Cell store for x, if it terminates, will terminate in the cor-

rect node n | x ∈ keyset(n), even during meganode

splits.

Although the server can block its own write operations

during a meganode split, it cannot block clients’ RDMA

reads, so we must ensure the latter remain correct. The

problem occurs during node invalidation and reuse. By

resetting the valid bit in each node in Xright , the server

guarantees that concurrent client-side searches fail upon

reading an invalid node. However, an invalid node might

be reused immediately and inserted into an arbitrary lo-

cation in Xleft . A client-side search intending to traverse

Xright might read this newly reincarnated node instead4.

The min and max keys in each node allows a client to

detect this case and restart the search.

2.5 Selectively Relaxed Locality

Traditional systems wisdom encourages maximizing lo-

cality between data and computation over that data to re-

duce expensive data copying over the network. RDMA

greatly reduces the cost of moving data to compu-

tation, so Cell’s hierarchical B-tree design allows for

both server-side searches (over local data) and RDMA

searches (over data copied from a Cell server). When

servers are under low load and/or client resources are

scarce, server-side searches achieve better overall re-

source efficiency. However, clients should switch to us-

ing RDMA searches when servers become overloaded

and client CPUs are available. How should clients (and

servers performing cross-server data structure modifica-

tion) dynamically relax locality, i.e., decide which search

method to use?

To answer this question, we model the system using

basic queuing theory [14]. Specifically, we model each

Cell server as consisting of two queues, one (Qs) for

processing server-side searches, the other (Qr) for pro-

cessing RDMA read operations. The service capacity

(ops/sec) of Qs is Ts, which is determined by the server’s

CPU capability, and the service capacity of Qr is Tr,

which is determined by the NIC’s RDMA read capac-

ity. We assume that Qs and Qr are independent of each

other.

Let qs and qr represent the current lengths of the

queues, respectively. Since our job sizes are fixed, the

optimal strategy is to Join the Shortest Queue (JSQ) [13,

48]. This decision is made on a per meganode basis.

More concretely, after normalizing queue length by each

queue’s service time, a client should join Qs if qs
Ts

< qr
Tr

,

and Qr otherwise. We need to make another adjustment

when applying JSQ: since each RDMA search involves

m RDMA reads, the client should choose server-side

search if the following inequality holds:

qs
Ts

< m×
qr
Tr

(1)

Instead of directly measuring the queue lengths (qs
and qr), which is difficult to do, we examine two more

easily measurable quantities, ls and lr. ls denotes the la-

tency of the search if it is done as a server-side operation.

It includes both the queuing delay and round-trip latency,

i.e. ls =
qs
Ts

+RTT . lr denotes the latency of an RDMA

read during an RDMA search, i.e. lr =
qr
Tr

+RTT . Sub-

stituting qs
Ts

= ls − RTT and qr
Tr

= lr − RTT into

inequality (1) gives us the final search choice strategy.

4Because nodes have fixed boundaries, we do not need to worry that

a client read might read in the middle of a node.
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To determine inequality 1, we need to estimate vari-

ous terms. For a 64MB meganode with 1KB nodes, we

initially set m = 5, the estimated height of each megan-

ode in nodes; as we traverse meganodes, we adjust this

estimate based on the average meganode height. We set

RTT to be the lowest measured RDMA latency to the

server. We approximate the current server-side search la-

tency (ls) and RDMA latency (lr) by their past measured

values. Over the time scale that the queue estimation

computations are being performed, the rates of queue fill-

ing and draining do not change dramatically, so the aver-

age queue length also remains relatively stable. A client

performing continuous operations may get new latency

measurements (i.e., queue length proxy measurements)

as often as every 10µs to 50µs.

Additionally, we apply the following refinements to

improve the performance of our locality selector:

• Coping with transient network conditions: We avoid

modeling short-term transient network conditions with

two improvements. First, we use a moving average to

estimate ls and lr: clients keep a history of the most

recent n (e.g. 100) samples for each server connec-

tion and calculate the averages. Second, we discard

any outlier sample s if |s − µ| ≥ Kσ, where µ and

σ are the moving average and standard deviation, re-

spectively, and K is a constant (e.g. 3). If we discard

more samples than we keep in one moving period, we

discard that connection’s history of samples.

• Improving freshness of estimates: We perform random-

ized exploration to discover changes in the environ-

ment. With a small probability p (e.g., 1%), we choose

the method estimated to be worse for a given search to

see if conditions have changed. If a client has not per-

formed any searches on a connection for long enough

(e.g., 3 seconds), that connection’s history is discarded.

The constants suggested above were experimentally de-

termined to be effective on a range of InfiniBand NICs

and under various network and CPU loads. We found that

the performance of the selector was not very sensitive to

changes in these values, as long as K > 1, p is small, and

n covers timescales from milliseconds to one second.

2.6 Failure Recovery

Cell servers log all writes to B-tree nodes and key-value

extents to per-region log files stored in reliable storage.

The log storage should be replicated and accessible from

the network, e.g. Amazon’s Elastic Block Store (EBS)

or HDFS. Our prototype implementation simply logs to

servers’ local disks. When a server S fails, the remain-

ing servers split the responsibility of S and take over its

memory regions in parallel by recovering meganodes and

key-value extents from the corresponding logs of those

regions. No remote pointers in the B-link tree need to be

updated because they only store region IDs; the external

(e.g., ZooKeeper-stored) map of region IDs to physical

servers suffices to direct searches to the correct server.

Operation logging is largely straightforward, with one

exception. During a meganode split, server S first creates

and populates a new meganode before changing the right

links of existing nodes to point to the new meganode. If

S fails between these two steps, the new meganode is or-

phaned. To ensure orphans are properly deleted, servers

log the start and completion of each meganode split and

check for orphaned meganodes upon finding unfinished

splits in the log. Node splits are handled similarly.

3 Implementation
We implemented Cell in ∼18,000 lines of C++. Cell uses

the libibverbs library, which allows user-space pro-

cesses to use InfiniBand’s RDMA and message-passing

primitives using functions called verbs. We use Reliable

Connection (RC) as the transport for both RDMA reads

and SEND/RECV verbs. We use SEND/RECV verbs to

create a simple RPC layer with messaging passing, used

for client-server and server-server messages. Although

client-side search requires that the client and server both

have logic to traverse the tree, this code can be reused to

limit the additional implementation effort.

Our server implementation is single-threaded; the

polling thread also processes the Cell requests and per-

forms server-server interactions for meganode splits.

Like HERD [22], we run multiple server processes per

machine in order to take advantage of multiple CPU

cores. As suggested by FaRM’s [7] findings on combin-

ing connections, we implemented a multi-threaded Cell

client, and experimentally chose 3 threads per client pro-

cess for most tests. To further increase parallelism, the

client supports pipelined operations to avoid idling by

keeping multiple key-value operations outstanding.

Client-side searches fetch 1KB nodes via RDMA to

traverse a meganode. Server-side searches involve send-

ing an RPC request to traverse a given meganode, and

receiving the pointer to the meganode at the next megan-

ode level along the path to that key’s leaf node.

Clients cache B-link tree nodes to accelerate future

traversals, maintaining an LRU cache of up to 128MB

of 1KB nodes. We only cache nodes at least four node

levels above the leaf node level to minimize churn and

maximize hits. Symmetrically, each client maintains an

LRU cache of up to 4K server-side traversal paths lead-

ing to the leaf-level meganodes, indexed by the key range

covered by that meganode. We used in-band metadata to

allow clients to verify the integrity of all RDMA reads.

For the CRCs covering extents, we use 64-bit CRCs to

make the probability of collisions vanishingly small. B-

link tree nodes are protected by the previously discussed

low and high version numbers.

Cell servers pre-allocate large pools of memory for B-

link tree nodes and key-value extents. The extents pool is

6



managed by our own version of SQLite’s mem5 memory

manager. We support hugetlbfs backing for these large

memory pools to reduce page table cache churn [7].

Node size and network amplification: We choose 1KB

nodes for most of our evaluation. This number is not ar-

bitrary: in our setup, 1KB RDMA fetches represent the

point above which RDMA latency goes from being flat to

growing linearly, and throughput switches from ops/sec-

bound to bandwidth-bound.

RDMA-based traversals do incur a significant band-

width amplification over server-side searches, on the or-

der of 4·1KB/64 bytes = 64× with caching enabled. Us-

ing smaller nodes would shift the balance between band-

width amplification and traversal time: for example, 512-

byte nodes would add 4 levels (33%) to a 1015-key tree

while only enabling 16% more node fetches/sec per NIC.

Client-side traversals would require 33% less bandwidth,

but would take 12% longer.

4 Evaluation
We evaluated Cell’s performance and scalability on the

PRObE Nome cluster [1]. The highlights of the results:

• Cell adapts to server CPU and network resources

across configurations. When the server CPU is more

bottlenecked than its NIC (e.g. using a single core

at the server), Cell achieves 439K searches/sec while

server-side-only achieves 164K searches/sec. When

the server is configured with 8 cores per server, Cell

mostly uses server-side-processing, achieving 1.1 mil-

lion ops/sec, 7% better than server-side-only and 3.7×
better than client-side-only.

• Cell handles load spikes that cause transient server

CPU bottlenecks and increased queuing delay by in-

creasing the ratio of client-side processing.

• Cell scales to 5.31 million search ops/sec using 16 Cell

servers, with 2 cores each.

• Cell is effective for any mix of B-tree get and put op-

erations, including those that cause online tree growth.

4.1 Experimental Setup

Hardware and configuration: Our experiments were

performed on the PRObE Nome cluster. Each machine is

equipped with 4 quad-core AMD processors and 32GB

of memory, as well as a Mellanox MHGH28-XTC Con-

nectX EN DDR 20Gbps InfiniBand NIC and two Intel

gigabit Ethernet adapters. Cell was run on top of CentOS

6.5 with the OFED 2.4 InfiniBand drivers.

For each experiment, we use distinct sets of server and

client machines. Unless otherwise specified, we use:

• 4 server machines with 2 cores per server (by running

2 server processes per machine)

• the remaining machines in each experiment for clients

• 20M key-value pairs populated per server

Throughput at saturation and latency at a moderate (non-

saturation) load are reported unless otherwise specified.

We enable hugetlbfs support on our server ma-

chines so that the RDMA-readable node and extents data

can be placed in 1GB hugepages. Due to the complexity

of modifying the InfiniBand drivers, we do not attempt to

put connection state in hugepages, as our experiments in-

dicate this would yield minimal impact on performance

at scale due to other sources of InfiniBand latency [7].

We allow clients to consume up to 128MB of RAM

to cache B-link tree nodes. To approximate performance

with a much larger tree, we prevent the bottom four node

levels of the tree from being cached, effectively limiting

the cache to the top three levels in most of our tests.

Cell’s throughput does not decrease when syn-

chronous logging is enabled for key-value sizes below

500 bytes. For 100% put workloads that insert key-value

pairs larger than 500 bytes, the I/O bandwidth of the SSD

in each of our local cluster’s servers becomes a bottle-

neck. As Nome’s machines lack SSDs, we disable Cell’s

asynchronous logging in our experiments.

Workloads: To test search, get, and put (insert/update)

operations, we generate random keys uniformly dis-

tributed from 8 to 64 characters, and values from 8 to 256

characters. We focus on evaluating the performance of

search, as that is the dominant operation in any workload.

For real-world benchmarks, we also utilize the Zipfian-

distributed YCSB-A (50% puts, 50% gets) and YCSB-B

(5% puts, 95% gets) workloads. All other tests use keys

selected with uniform probability.

4.2 Microbenchmarks

Systems with relaxed locality are fast. Operating on

a single server machine, Cell surpass the latency and

throughput of schemes that maintain strict locality. This

section evaluates Cell’s search performance on a single

meganode on a single CPU core without caching, using

server-side search, client-side search, and selectively re-

laxed locality. Cell’s performance on several cores per

single machine is also measured.

Raw InfiniBand operations: We measure the through-

put and latency of 1KB RDMA reads and 128-byte two-

way Verb ping-pongs on 1 to 16 servers, utilizing 1

CPU core per machine (Table 1). Because very little per-

message processing is performed on the servers, the CPU

is not a bottleneck. We vary the client count to search the

throughput-latency space for RDMA reads, Verb mes-

saging, and simultaneous use of both. Because latency

rises with no additional throughput past saturation, we

report the throughput with the lowest latency within 5%

of the maximum measured throughput.

Previous work has demonstrated higher throughput for

RDMA and Verb messaging [22, 7]. FaRM reported 4×
1KB RDMA read throughput on newer, 2× throughput

NICs [7]. We attempted to replicate HERD’s published

results using their benchmarks on the PRObE Susitna
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testbed, equipped with 40Gbps InfiniBand cards. We

reached 16M ops/sec for one server with 4-byte RDMA

reads accessing the same 4 bytes repeatedly within a

5MB region, compared with 20M ops/sec reported by

the authors [22]. However, when we switched to 1KB

RDMA reads spread through the entire 5MB region, the

throughput dropped to 1.69M ops/sec, and further en-

larging the RDMA-readable region to a more realistic

8GB dropped the throughput to 1.3M ops/sec. Notably,

the tests throughout the remainder of this evaluation were

run on older 20Gbps InfiniBand cards that are bottle-

necked at a similar operation limit, 1.04M ops/sec over a

1GB area (or 1.44M ops/sec over a 64MB area).

Similarly, we tested HERD’s Verb benchmarks. We

achieved 12M ops/sec for 16-byte Verb messages ex-

changed over the Unreliable Connection (UC) transport,

and 8.5M ops/sec for 128-byte messages over RC. In the

HERD benchmark, each client only communicates with

a single server. With one-to-one communication and a

very small number of connections (10), we were able to

achieve similar performance with our own benchmarks.

Clients in a real-world distributed storage system need

to engage in all-to-all communication with all servers, so

our microbenchmarks (Table 1) report results with all-to-

all communication with up to 100 clients.

We emphasize that selective locality can balance CPU

and network, adapting to the available resources and pro-

viding better relative results than server-side or client-

side processing alone. Some of our experimental con-

ditions are more realistic than previous work, while we

omit some difficult (but reasonable) optimizations that

prior work uses. While our raw InfiniBand results dif-

fer in absolute numbers, Cell is able to balance the CPU

and network resources at the level appropriate for a given

environment, including those with better network perfor-

mance and/or more CPU resources than our prototype.

Search throughput with a single meganode: To estab-

lish the baseline performance of Cell’s selectively re-

laxed locality approach, we present a microbenchmark

for traversals of a single meganode served by 1 server

CPU core. We examine the performance of client-side

only searches, server-side only searches, and Cell’s local-

ity selector, each with client-side caching disabled. Fig-

ure 4 demonstrates the throughput-latency relationship

as we increase the number of client processes from 1 to

12, distributed across 4 client machines. With the server

performing B-tree searches, 1 CPU core is no longer suf-

ficient to saturate the NIC; the server-side search’s peak

throughput is 158K searches/sec, and the bottleneck is

the server CPU. Client-side-only search achieves 305K

search/sec; since 5 RDMA reads are required to tra-

verse the 5-level meganode used and caching is disabled,

this matches our raw InfiniBand performance of 1.44M

ops/sec over a 64MB region. Combining the two meth-
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Figure 4: Throughput and latency for server-side search, client-

side search, and Cell’s locality selector. The experiments in-

volve 1 server serving one meganode, utilizing one core. Client

B-tree caching and operation pipelining are disabled.

ods yields 93% of the aggregate throughput, peaking at

432K searches/sec. For all except the 1-client (lowest-

throughput) point on each line, the server’s single CPU

core is already saturated with the number of operations it

can perform per second. RDMA provides Cell with ex-

tra throughput, and in this case lower latency, because

the extra latency from multiple RDMA round trips is

overshadowed by the queuing delay at the server for the

server-side case.

To calibrate Cell’s local in-memory B-tree implemen-

tation, we compare its performance and MassTree’s [31].

Using key and value distributions matching Cell’s and

the jemalloc allocator, we measure MassTree’s per-

formance at 276K local B-tree searches/sec (using a sin-

gle core), compared to Cell’s 379K local searches/sec.

This suggest Cell’s local B-tree implementation is com-

petitive. When adding the cost of network commu-

nication, Cell performs 158K server-side searches/sec.

MassTree does not have InfiniBand support, nor does it

implement a distributed B-tree. Thus, we do not compare

with MassTree further.

4.3 Performance at Scale

Cell scales well across many servers. We vary the num-

ber of server machines from 1 to 16, using 2 CPU cores

per server and enabling client caching. We scale the size

of the B-tree to the number of servers, at 20M tuples

per server, storing up to 320M tuples for 16 servers.

We also use enough clients to saturate each set of Cell

servers. Our biggest experiments consist of 64 machines

(16 servers plus 48 clients) with 2560 client-server con-

nections (80 3-threaded client processes to saturate the

32 server cores). Our largest B-tree is 2 meganodes tall

and stores 320M tuples.

Throughput: Figure 5 shows the search throughput in

logscale of Cell as well as the alternative of server-side

processing only. It demonstrates that Cell displays near-

linear throughput scaling over additional servers (satu-
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RDMA read Verb messaging Hybrid

Servers Throughput Latency Throughput Latency Throughput Latency

1 1.04M ops 15.5µs 750K ops 21.4µs 1.60M ops 20.1µs

4 4.13M ops 15.5µs 2.96M ops 21.7µs 6.00M ops 21.8µs

8 8.77M ops 14.6µs 5.88M ops 21.5µs 10.58M ops 20.2µs

24 24.97M ops 15.5µs 18.15M ops 22.5µs 35.56M ops 22.0µs

Table 1: Microbenchmarks of throughput and latency at maximum throughput for 1KB RDMA reads over a 1GB area, 128-byte

2-way Verb messages, and both. All reported values are within 5% of the peak measured, at minimum latency.
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Figure 5: Throughput as the number of servers increases from

1 to 16. Each server uses 2 CPU cores. 4 client machines per

server are used to saturate the servers.

rated with additional clients) until queue pair state over-

whelms the NICs’ onboard memory. Cell’s throughput

increases 9.2× from 1 server to 16 servers. Compared

to the server-side only approach, Cell’s hybrid approach

achieves 70% higher throughput with 16 servers.

Latency: The B-tree remains at 2 meganode levels and

7 node levels as the number of servers grows from 4 to

16, so the overall search latency is stable. Below satu-

ration, the median latency for both the server-side only

approach and Cell is ∼30µs.

4.4 Locality Selector: Balancing CPU and Network

Cell’s locality selector effectively chooses the correct

search method to use under arbitrary network and server

load conditions. The selector is designed to minimize op-

eration latency while rationing server CPU resources. We

evaluate its performance by asking three questions:

1. How effectively does Cell use CPU resources?

2. How accurately does Cell estimate and balance search

costs for a given environment?

3. When is the locality selector beneficial?

This section answers all three questions.

4.4.1 Varying Server CPU Resource

We measure the performance of Cell and server-side

search from 1 to 8 server CPU cores on 1 server machine

and 4 server machines. Table 2 compares Cell’s local-

ity selector and 100% server-side search on 4 servers,

showing that Cell is able to consistently match or ex-

ceed server-side search’s throughput. With 2 cores, Cell

achieves 74% of server-side search’s maximum through-

put, for which the latter requires 7 cores. Cell’s selective

locality approach allows the system to dynamically bal-

ance server CPU, client CPU, and network bandwidth

usage, so a Cell storage cluster can indeed economically

satisfy transient peak usage with fewer CPU cores. In ad-

dition, in applications where server-side operations are

more CPU-intensive and each CPU core can therefore

complete fewer operations each second, Cell’s advantage

becomes even more pronounced.

Table 2 indicates that Cell’s hybrid scheme can ex-

tract 2.13M searches per second from 2 CPU cores on

each of 4 server machines, more than double the 991K

server-side only searches at the same CPU count. Server-

side searches are able to reach 2.90M searches per sec-

ond using 7 cores per machine, close to the theoret-

ical 3.0M ops/sec maximum Verb throughput our mi-

crobenchmarks suggest. This 3.5× resource expenditure

yields only 35% higher throughput compared with the

hybrid selector on 2 cores per machines, for example.

The latency of hybrid operations remains consistently

low even with Cell utilizing few CPU cores; with 2 cores

and moderate load, searches average 28.5µs, dropping to

26.4µs with 4 cores per server. Although modern servers

typically have many more than 2 cores, even in a ded-

icated environment, cores no longer needed for storage

logic can be devoted to CPU-intensive tasks data, includ-

ing summarization, aggregation, analysis, cryptographic

verification, and more. The server-side-only advantage in

Table 2 for ≥ 7 cores is due to the fact that although only

1% of requests are performed client-side, with plentiful

CPU resources the latency of client-side requests is sig-

nificantly higher than server-side requests.

If CPU cores are plentiful, Cell has the same behavior

as server-side processing and its performance is bounded

by the InfiniBand IOPs. Using the Unreliable Datagram

(UD) transport instead of the Reliable Connection (RC)

transport can be used to avoid accumulating connec-

tion state and thus greatly increase messaging perfor-

mance [24]. With UD, the higher messaging throughput

can be saturated with additional server CPUs, if avail-

able, but RDMA is not available to provide load balanc-

ing. In a shared cluster with finite CPU resources han-

dling a complex data structure like a distributed B-tree,

the extra UD capacity would likely go to waste.
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Figure 6: Throughput of 1 server running Cell on 1 to 8 CPU

cores, using Cell’s locality selector, a manually-tuned percent-

age of server-side operations, server-side only, and client-side

only operations.

4.4.2 Dynamic Cost Estimation and Balancing

We find that under a constant server load, there is a per-

client fixed ratio of server-side and client-side searches

that produces maximal throughput at minimal latency.

However, as illustrated in Table 2, these ratios shift dra-

matically as the available server resources change, and

must be re-tuned for every change in the number of avail-

able cores per server, the number of servers, the number

of clients, the workload, and the request rate. Cell cor-

rectly picks ratios that yield minimum median latency

regardless of the server load; in fact, because the ideal

ratio is slightly different for each client due to network

topology and the position of its connection in the NIC’s

state, we observe Cell picking different ratios on each

client that produce globally-optimized throughput and la-

tency. Figure 6 shows that in most cases, especially when

few resources are available, Cell meets or exceeds the

throughput of the best hand-tuned fixed ratio, as it can

continuously adjust for current load conditions.

Other environments: Tests on two other clusters with

different NICs and CPUs yielded similar results. With

similar 2-server-CPU experiments, Cell adapted with dif-

ferent ratios of client- to server-side search, using more

client-side searches on Susitna’s powerful NICs [1] and

more server-side searches on our local cluster.

4.4.3 Load Spikes and Load Balancing

Cell’s ability to maintain low latency in the face of tran-

sient server load demonstrates the value of dynamically

selecting between RDMA and messaging-based traver-

sal. In the absence of applicable traces from real-world

systems at scale, we perform microbenchmarks of Cell’s

ability to rapidly adapt to load spikes and workload

changes. Figure 7 compares the application-facing la-

tency of Cell clients and clients that use only server-side

search when the load on a cluster of 4 servers increases

unexpectedly for 5 seconds. In these tests, application

search requests arrive at each of 24 Cell clients every

75µs. For 5 seconds, the load rises to 2.5× as an addi-

Cores Server-Side Only Cell Fixed Ratio

1 505K 1842K (30%) 1841K

2 991K 2142K (41%) 2129K

3 1447K 2456K (53%) 2366K

4 1831K 2573K (62%) 2513K

5 2145K 2687K (77%) 2593K

6 2478K 2845K (88%) 2768K

7 2901K 2901K (99%) 2776K

8 2543K 2812K (99%) 2571K

Table 2: Search throughput of 4 server machines utilizing 1 to 8

CPUs per server: 100% server-side searches, Cell (with the av-

erage of its dynamically-selected ratio of server-side searches),

and a fixed percentage of server side searches using that aver-

age. On 8 or more CPUs, the amount of connection state nec-

essary to connect servers to clients causes predictable degra-

dation. Cell saturates with fewer clients, so this effect is less

pronounced.
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Figure 7: Request latency during 5-second transient load spike.

These tests were performed with client pipelining disabled for

simplicity. Note logarithmic y-axis.

tional 36 clients begin injecting searches at the same rate.

Figure 7 shows that Cell is able to very rapidly switch the

majority of its searches to client-side traversals, main-

taining low median and 90th percentile latencies com-

pared to server-side search. Cell’s locality selector ef-

fectively manages server CPU resources to minimize la-

tency in the face of long-term and short-term changes in

server load and available resources.

4.5 Read-Write Concurrency

Like most sorted stores, Cell can perform search, get,

put, delete, and range operations. We benchmark mixes

of get and put operations to ensure that Cell retains its

advantages beyond search operations.

Cell is designed to maintain low latency and to support

concurrent read operations even when servers are mod-

ifying the tree state, for puts or for node or meganode

splits. Notably, the locality selector optimizes for server

utilization rather than allowing any single client to opti-

mize for its own latency. Figure 8 traces the median la-

tency of a group of 8 clients performing searches while

a separate group of 16 clients idles, then performs bulk
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Figure 8: Latency of reads on 8 clients (24 threads) without

and with 16 clients (48 threads) performing continuous insert

operations on a cluster of 4 servers running 2 Cell threads each.

put operations that cause the tree structure to grow. With

Cell, the search clients maintain concurrency by using

more client-side operations, so a set of meganode splits

completes faster. The median latency of Cell searches

is thus slightly higher than the server-side equivalent,

while the 90th percentile latency is far lower. Server-side

search latency is impacted more significantly by write

operations as the server’s CPU capacity is shared be-

tween the two. With Cell we are able to dynamically shift

the search operations to the client, incurring a slightly

higher latency over server-side search, while using the

saved server CPU cycles to execute node and meganode

split operations with reduced latency.

Therefore, workloads that combine read and write op-

erations can maintain lower latency (and higher through-

put) with Cell than with server-side only operations. We

test mixes of get (rather than search) and update opera-

tions from 100% get to 100% update, as well as 100%

insert and two YCSB benchmarks. Figure 9 shows that

Cell consistently outperforms server-side only operations

across a range of workloads. We do not report the per-

formance of range (range queries) because for queries

that return a single key, range has the same performance

as get. As the set of keys returned by range grows, the

per-key range performance improves, as up to a full leaf-

level node of keys can be returned by each RDMA fetch

within the range operation.

5 Related Work
There are two general approaches to using RDMA in dis-

tributed systems. One is to use RDMA to improve the

throughput of the message-passing substrate of a sys-

tem, increasing the overall performance when the sys-

tem is bottlenecked by its message-passing capability.

We call this approach RDMA-optimized communica-

tion. The other approach is to use RDMA to bypass

servers’ CPUs to improve the performance of systems
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Figure 9: Throughput of pipelined mixed Get and Put work-

loads on 4 servers, 2 CPUs per server.

bottlenecked by that resource. We refer to this approach

as systems with client-side processing. In this section,

we discuss related projects exploring both approaches as

well as work on distributed storage.

RDMA-optimized communication: The HPC commu-

nity has exploited the performance advantage of RDMA

extensively to improve the MPI communication sub-

strate [28, 27, 42]. The systems community has recently

begun to explore the use of RDMA in distributed sys-

tems. Most projects focus on using RDMA to improve

the underlying message-passing substrate of systems

such as in-memory key-value caches [22, 21, 20, 44, 23],

HBase [17], Hadoop [29], PVFSpvfs and NFS [11]. For

example, HERD has proposed using an RDMA write to

send a request to a server and to have the server respond

using an unreliable datagram (UD) message. FaRM [7, 8]

also uses RDMA writes to implement a fast message

passing primitive. The advantage of this approach is that

the resulting solutions are generally applicable, because

all distributed systems could use a high performance

message-passing primitive for communication. However,

when the server’s CPU becomes the bottleneck instead of

the network, this approach does not take full advantage

of RDMA to relieve servers’ CPU load.

Systems with client-side processing: Several recent

systems exploit RDMA’s CPU-bypassing capability. Pi-

laf [32] builds a distributed key-value store which uses

client-side processing for hash table lookups. FaRM [7,

9] provides a distributed transactional in-memory chunk

store which processes read-only transactions at the client.

We could potentially layer Cell’s design on top of FaRM,

but this would require using distributed transactions to

modify the B-tree [4, 43]. With Cell’s approach, we do

not need distributed transactions (Section 2). DrTM [47,

6] offers distributed transactions over RDMA by exploit-

ing hardware transactional memory (HTM) support.

Cell is inspired by FaRM and Pilaf to offload the pro-
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cessing of read-only requests to the clients via RDMA

reads. The main difference between Cell and prior work

is that Cell explicitly tries to balance the server CPU and

network bottleneck by carefully choosing when to prefer

client-side over server-side processing.

Distributed B-trees: There are two high-level ap-

proaches for constructing a distributed B-tree. One builds

a distributed tree out of lean (1-8KB) nodes [30, 4, 43].

Small nodes are crucial in the design of these systems,

because the systems are all built on top of a distributed

chunk/storage layer, and clients traverse the tree by fetch-

ing entire nodes over the network. The other approach,

pioneered by Google’s BigTable [5], builds a tree out of

fat nodes (like meganodes; up to 200MB) [15]. This de-

sign reduces the number of different machines that each

search needs to contact, but requires server-side process-

ing to search within a meganode. Cell combines the two

approaches.

Cell also handles concurrency differently than prior

systems. Both Johnson and Colbrook [19] and Box-

wood [30] implement distributed B-trees based on Sa-

giv’s B-link tree. Johnson and Colbrook doubly-link the

levels of the tree, merge nodes on deletion, and cache

internal nodes consistently across servers, resulting in

a complex scheme that requires distributed locks. Cell

uses only local locks, similar to Boxwood. Furthermore,

our caching of internal nodes is only advisory in that

stale caches do not affect the correctness of the search.

Aguilera et al. [4] implement a regular B-tree and han-

dle concurrency requirements using distributed transac-

tions, which are more conservative than necessary and

are especially heavy-handed for read-only searches. Min-

uet [43] expands on Aguilera et al.[4], addressing some

of the scalability bottlenecks and adding multiversioning

and consistent snapshots. Some of their improvements

emulate the B-link tree, yet they do not seem to benefit

from the simplicity of Sagiv’s single-locking scheme.

Other in-memory distributed storage: The high la-

tency of disk-based storage has led to a large research

effort behind in-memory storage. Memcached [10] and

Redis [39] are popular open source distributed key-

value stores. The RAMCloud project explores novel fail-

ure recovery mechanisms in an in-memory key-value

store [36, 37], although it does not take particular ad-

vantage of RDMA. Masstree [31] and Silo [45] pro-

vide fast single-server in-memory B-tree implementa-

tions. MICA [26] presents a fast single-machine imple-

mentation of MassTree. These are not distributed and are

not based on B-link trees.

6 Conclusion
RDMA opens up a new design space for distributed sys-

tems where clients can process some requests by fetch-

ing the server’s state without involving its CPU. Mix-

ing client-side and server-side processing allows a sys-

tem to adapt to the available resources and current work-

load. Cell achieves up to 5.31M search ops/sec on 32

CPU cores across 16 servers, at an unsaturated latency of
∼30µs. Cell saves up to 3 CPU cores per server per In-

finiBand NIC, freeing resources for other CPU-intensive

application logic, and maintains high throughput and low

latency in the face of load spikes.

In looking towards Cell as the backend for real

databases, we experimented with transactions and other

database features. For example, RDMA can be used to

quickly determine whether any item in a transaction’s

write set is currently locked by fetching many leaves

across many servers simultaneously, and the status of

locked keys can be re-checked with minimal resource

consumption just by refetching that leaf.

From building and refining Cell, we learned lessons

applicable to designing any distributed data store exploit-

ing RDMA. Almost any RDMA-traversable distributed

data structure that supports concurrent server-side writes

can be built from CRC-protected variable-length data

elements, version-protected fixed-length data elements,

and a globally-known data structure root location. We

learned that Pilaf’s CRC approach works poorly for

nodes in a structure with few roots, as each CRC up-

date propagates to the root. Finally, an approach simi-

lar to our meganode split operation can make other types

of distributed data structures’ mutations friendly to con-

current RDMA access. Such mutations should replicate

data, modify or rearrange data as necessary, then atomi-

cally (from the clients point of view) update links to old

data to instead point to new data.
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