The FuzzyLog: A Partially Ordered Shared Log

Joshua Lockerman
Yale University

Daniel J. Abadi
University of Maryland,
College Park

UC Berkeley

James Aspnes
Yale University

TJose M. Faleiro

T Juno Kim TSoham Sankaran

UC San Diego Cornell University
Siddhartha Sen TMahesh Balakrishnan
Microsoft Research Yale University / Facebook

" Work done while authors were at Yale University

Abstract

The FuzzyLog is a partially ordered shared log abstrac-
tion. Distributed applications can concurrently append
to the partial order and play it back. FuzzyLog appli-
cations obtain the benefits of an underlying shared log
— extracting strong consistency, durability, and failure
atomicity in simple ways — without suffering from its
drawbacks. By exposing a partial order, the FuzzyLog
enables three key capabilities for applications: linear
scaling for throughput and capacity (without sacrificing
atomicity), weaker consistency guarantees, and tolerance
to network partitions. We present Dapple, a distributed
implementation of the FuzzyLog abstraction that stores
the partial order compactly and supports efficient ap-
pends / playback via a new ordering protocol. We im-
plement several data structures and applications over the
FuzzylLog, including several map variants as well as a
ZooKeeper implementation. Our evaluation shows that
these applications are compact, fast, and flexible: they
retain the simplicity (100s of lines of code) and strong
semantics (durability and failure atomicity) of a shared
log design while exploiting the partial order of the Fuzzy-
Log for linear scalability, flexible consistency guarantees
(e.g., causal+ consistency), and network partition toler-
ance. On a 6-node Dapple deployment, our FuzzyLog-
based ZooKeeper supports 3M/sec single-key writes, and
150K/sec atomic cross-shard renames.

1 Introduction

Large-scale data center systems rely on control plane ser-
vices such as filesystem namenodes, SDN controllers,
coordination services, and schedulers. Such services
are often initially built as single-server systems that
store state in local in-memory data structures. Proper-
ties such as durability, high availability, and scalability
are retrofitted by distributing service state across ma-
chines. Distributing state for such services can be dif-
ficult; their requirement for low latency and high respon-
siveness precludes the use of external storage services

with fixed APIs such as key-value stores, while custom
solutions can require melding application code with a
medley of distributed protocols such as Paxos [29] and
Two-Phase Commit (2PC) [21], which are individually
complex, slow/inefficient when layered, and difficult to
merge [40, 60].

A recently proposed class of designs centers on the
shared log abstraction, funneling all updates through a
globally shared log to enable fault-tolerant databases [9—
11, 19, 51], metadata and coordination services [8, 12],
key-value and object stores [3, 41, 57], and filesystem
namespaces [50, 56]. Services built over a shared log
are simple, compact layers that map a high-level API to
append/read operations on the shared log, which acts as
the source of strong consistency, durability, failure atom-
icity, and transactional isolation. For example, a shared
log version of ZooKeeper uses 1K lines of code, an order
of magnitude lower than the original system [8].

Unfortunately, the simplicity of a shared log requires
imposing a system-wide total order that is expensive,
often impossible, and typically unnecessary. Previous
work showed that a centralized, off-path sequencer can
make such a total order feasible at intermediate scale
(e.g., a small cluster of tens of machines) [7, 8]. How-
ever, at larger scale — in the dimensions of system size,
throughput, and network bandwidth/latency — imposing a
total order becomes expensive: ordering all updates via a
sequencer limits throughput and slows down operations
if machines are scattered across the network. In addi-
tion, for deployments that span geographical regions, a
total order may be impossible: a network partition can
cut off clients from the sequencer or a required quorum
of the servers implementing the log. On the flip side, a
total order is often unnecessary: updates to disjoint data
(e.g., different keys in a map) do not need to be ordered,
while updates that touch the same data may commute
because the application requires weak consistency guar-
antees (e.g., causal consistency [5]). In this paper, we
explore the following question: can we provide the sim-

remote blue chain (half-propagated)

-~ -~
[F i L I M ! N
-/‘ -7

app
servers

blue shard

E<é

@l 5

red shard

remote red chain (half-propagated)
| Fuzzylog append / play order >
Figure 1: In the FuzzyLog, each color contains updates

to a data shard, while each chain contains updates from
a geographical region.

plicity of a shared log without imposing a total order?

We propose the FuzzylLog abstraction: a durable, iter-
able, and extendable order over updates in a distributed
system. Crucially, a FuzzyLog provides a partial order
as opposed to the total order of a conventional shared
log. The FuzzyLog is a directed acyclic graph (DAG) of
nodes representing updates to a sharded, geo-replicated
system (see Figure 1). The FuzzylLog materializes a
happens-after relation between updates: an edge from A
to B means that A must execute after B.

The FuzzyLog captures two sources of partial ordering
in distributed systems: data sharding and geo-replication.
Internally, nodes in the Fuzzylog are organized into
colors, where each color contains updates to a single
application-level data shard. A color is a set of inde-
pendent, totally ordered chains, where each chain con-
tains updates originating in a single geographical region.
Chains within a color are connected by cross-links that
represent update causality. The entire DAG — consisting
of multiple colors (one per shard) and chains within each
color (one per region) — is fully replicated at every re-
gion and lazily synchronized, so that each region has the
latest copy of its own chain, but some stale prefix of the
chains of other regions. Figure 1 shows a FuzzyLog de-
ployment with two data shards (i.e,. two colors) and two
regions (i.e., two chains per color).

The FuzzyLog API is simple: a client can append a
new node by providing a payload describing an update
and the color of the shard it modifies. The new node is
added to the tail of the local chain for that color, with
outgoing cross-links to the last node seen by the client in
each remote chain for the color. The client can synchro-
nize with a single color, playing forward new nodes in the
local region’s copy of that color in a reverse topological
sort order of the DAG. A node can be appended atomi-
cally to multiple colors, representing a transactional up-
date across data shards.

Applications built over the FuzzyLog API are nearly
as simple as conventional shared log systems. As shown
in Figure 1, FuzzyLog clients are application servers that
maintain in-memory copies or views of shared objects.
To perform an operation on an object, the application
appends an entry to the FuzzyLog describing the muta-
tion; it then plays forward the FuzzyLog, retrieving new
entries from other clients and applying them to its lo-
cal view, until it encounters and executes the appended
entry. The local views on the application servers consti-
tute soft state that can be reconstructed by replaying the
FuzzyLog. A FuzzyLog application that uses only a sin-
gle color for its updates and runs within a single region is
identical to its shared log counterpart; the FuzzylLog de-
generates to a totally ordered shared log, and the simple
protocol described above provides linearizability [23],
durability, and failure atomicity for application state.

By simply marking each update with colors corre-
sponding to data shards, FuzzyLog applications achieve
scalability and availability. They can use a color per
shard to scale linearly within a data center; transac-
tionally update multiple shards via multi-color appends;
obtain causal consistency [5] within a shard by using
a color across regions; and toggle between strong and
weak consistency when the network partitions and heals
by switching between regions.

Implementing the Fuzzyl.og abstraction in a scalable
and efficient manner requires a markedly different design
from existing shared log systems. We describe Dapple, a
system that realizes the FuzzyLLog API over a collection
of in-memory storage servers. Dapple scales throughput
linearly by storing each color on a different replica set
of servers, so that appends to a single color execute in a
single phase, while appends that span colors execute in
two phases (in the absence of failures) that only involve
the respective replica sets. Dapple achieves this via a
new fault-tolerant ordering algorithm that provides linear
scaling for single-color appends, serializable isolation
for multi-color appends, and failure atomicity. Across
regions, a lazy synchronization protocol propagates each
color’s local chain to remote regions.

We implemented a number of applications over the
FuzzylLog abstraction and evaluated them on Dapple.
AtomicMap (201 lines of C++) is a linearizable, durable
map that supports atomic cross-shard multi-puts, scal-
ing to over 5.5M puts/sec and nearly 1M 2-key multi-
puts/sec on a 16-server Dapple deployment. CRDTMap
(284 LOC) provides causal+ consistency by layering a
CRDT over the FuzzylLog. CAPMap (424 LOC) of-
fers strong consistency in the absence of network par-
titions, but degenerates to causal+ consistency during
partitions. We implemented a ZooKeeper clone over
the FuzzyLog in 1881 LOC that supports linear scaling
across shards and supports atomic cross-shard renames.

We also implemented a map that provides Red-Blue con-
sistency [32], as well as a transactional CRDT [6].
Existing implementations of these applications are
monolithic and complex; they often re-implement com-
mon mechanisms for storing, propagating, and order-
ing updates (such as protocols for atomic commit, con-
sensus, and causality tracking). The FuzzyLog imple-
ments this common machinery efficiently under an ex-
plicit abstraction, hiding the details of protocol imple-
mentation while giving applications fine-grained control
over sharding and geo-replication. As a result, appli-
cations can express different ordering requirements via
simple invocations on the FuzzyLog API without imple-
menting low-level distributed protocols.
Contributions: We propose the novel abstraction of a
FuzzyLog (§3): a durable, iterable DAG of colored nodes
representing the partial order of updates in a distributed
system. We argue that this abstraction is useful (§4), de-
scribing and evaluating application designs that obtain
the simplicity of the shared log approach while scaling
linearly with atomicity, obtaining weaker consistency,
and tolerating network partitions. We show that the ab-
straction is practically feasible (§5), describing and eval-
uating a scalable, fault-tolerant implementation called
Dapple.

2 Motivation

The shared log approach makes distributed services sim-
ple to build by deriving properties such as durability, con-
sistency, failure atomicity, and concurrency control via
simple append/read operations on a shared log abstrac-
tion. We describe the pros and cons of this approach.

2.1 The simplicity of a shared log

In the shared log approach, application state resides in
the form of in-memory objects backed by a durable,
fault-tolerant shared log. In effect, an object exists in two
forms: an ordered sequence of updates stored durably in
the shared log; and any number of views, which are full
or partial copies of the data structure in its conventional
form — such as a tree or a map — stored in DRAM on
clients (i.e., application servers). Importantly, views con-
stitute soft state and are instantiated, reconstructed, and
updated on clients as required by playing the shared log
forward. A client modifies an object by appending a new
update to the log; it accesses the object by first synchro-
nizing its local view with the log.

As described in prior work [7, 8], this design simpli-
fies the construction of distributed systems by extracting
key properties via simple appends/reads on the shared
log, obviating the need for complex distributed protocols.
Specifically, the shared log is the source of consistency:
clients implement state machine replication [46] by fun-
neling writes through the shared log and synchronizing

their views with it on reads. The shared log also provides
durability: clients can recover views after crashes simply
by replaying the shared log. It acts as a source of failure
atomicity and isolation for transactions: the shared log is
literally the serializable order of transactions.

2.2 The drawbacks of a total order

The shared log approach achieves a total order over all
updates in a distributed system. We argue that such a to-
tal order can be expensive or impossible to achieve when
services scale beyond the confines of a small cluster.

Total ordering is expensive. The traditional way to
impose a total order is via a leader that receives up-
dates from clients and sequences them; however, this
limits the throughput of the system at the I/O band-
width of a single machine [16]. CORFU [7] uses an
off-path sequencer — instead of a leader — that issues
tokens or contiguous positions in an address space to
clients. To append data, a client first obtains a token
from the sequencer — effectively reserving an address
in the address space — and then writes the payload di-
rectly to a stripe of storage servers responsible for stor-
ing that address. This allows clients to totally order
updates to a cluster of storage servers without pushing
all I/O through a single machine; instead, the aggregate
throughput of the system is limited by the speed at which
the sequencer can update a counter and hand out tokens
(roughly 600K ops/sec in CORFU [8]). To leverage the
total order without requiring all clients to play back ev-
ery entry, runtimes built over CORFU such as Tango [8]
and vCorfu [57] support selective playback via streams
and materialized streams, respectively. This requires se-
quencer state to be more complex than a single counter
(e.g., per-stream backpointers [8] or additional stream-
specific counters [57]).

While an off-path sequencer works well for small clus-
ters (e.g., 20 servers in two adjacent racks [8]), it does
not scale along a number of key dimensions. One such
dimension is network diameter: since the sequencer lives
in a fixed point in the network, far-away clients must in-
cur expensive round-trips on each append. A second di-
mension is network bandwidth; sequencers are not I/O-
bound or easily parallelizable, and cannot keep pace with
recent order-of-magnitude increases in I/O bandwidth.
On 1 Gbps networks, a sequencer that runs at 600K ops/s
can support a 20-server CORFU deployment (1 Gbps per
server or 30K 4KB appends/sec); however, on a 40 Gbps
network, supporting 20 servers will require the sequencer
to run at 24M ops/s. A third dimension is payload gran-
ularity: shared log applications do not store large pay-
loads (in the limit, these could be 64-bit pointers to big-
ger items stored in some external blob store). With 100-
byte payloads, the same sequencer will now have to run
at nearly 1 billion ops/s. A final dimension is system size:

// constructs a new handle for playing a color

FL_ptr new_instance(colorID color, snapID snap=NULL);

/lappends a node to a set of colors

int append(FL_ptr handle, char xbuf, size_t bufsize,
colorset *xnodecolors);

/I synchronizes with the log

snapld sync(FL_ptr handle, void (xcallback)(char xbuf,
size_t bufsize));

// trims the color

int trim(FL_ptr handle, snapID snap);

Figure 2: The FuzzyLog APL

if we want to support 40 servers, we now need 2 billion
ops/s from the sequencer.

Published numbers for sequencers in fully functional
systems include: roughly 200K ops/sec (CORFU [7]),
250K ops/sec (NOPaxos [33]), and 600K ops/sec
(Tango [8]). Stand-alone sequencers (i.e., simple coun-
ters without per-stream state) are faster; e.g., an RDMA-
based counter runs at 122M ops/sec (80X faster than the
next highest in the literature) [25]. Even at this speed,
the largest cluster supported at 100 Gbps and a 512-byte
payload would have just four servers.

Some approaches bypass the sequencer throughput
cap at the cost of increasing append latency, either by
aggressive batching [51] or writing out-of-order in the
shared log address space and waiting for preceding holes
to be filled [41]. The added append latency can be unten-
able for control plane services.

Total ordering is impossible. Regardless of how the
total order is generated, it is fundamentally vulnerable
to network partitions. Any protocol that provides a to-
tal order consistent with a linearizable order (i.e, if an
update B starts in real time after another update A com-
pletes, then B occurs after A in the total order) is subject
to unavailability during network partitions [14].

We find ourselves at a seeming impasse: a shared log
enables simplicity and strong semantics for distributed
systems, but imposes a total order that is expensive and
sometimes impossible. We break this impasse with a par-
tially ordered shared log abstraction.

3 The FuzzyLog Abstraction

The FuzzyLog addresses the ordering limitations in Sec-
tion 2 via an expressive partial ordering API. The Fuzzy-
Log’s API captures two general patterns via which ap-
plications partially order operations. First, applications
partition their state across logical data shards, such that
updates against different shards are processed concur-
rently. Second, when deployed across geographical re-
gions, applications weaken consistency to avoid syn-
chronous cross-region coordination on the critical path
of requests; as a result, updates across regions — even to

client

H view
.
e ¢ o < 0 .
»
local chain emnnmn®
G . P. region
e o/
. -

remote chain (half-propagated)

local chain

remote chain (half-propagated)

1) client calls sync 2) remote nodes added (K) / propagated (J)

local chain P AU LITTY
’I D

e—0—0

remote chain (half-propagated)

remote chain (half-propagated)

3) client appends | with cross-edge to E 4) client calls sync

Figure 3: The evolution of a single color.

the same logical data partition — can occur concurrently.

A FuzzyLog is a type of directed acyclic graph (DAG)
that can be constructed and traversed concurrently by
multiple clients. For clarity, we use the term ‘node’ ex-
clusively to refer to nodes in the FuzzyLog DAG. Each
node in the DAG is tagged with one or more colors.
Colors divide an application’s state into logical shards;
nodes tagged with a particular color correspond to up-
dates against the corresponding logical shard.

Each color is a set of totally ordered chains, one
per region, with cross-edges between them that indicate
causality. Every region has a full but potentially stale
copy of each color; the region’s copy has the latest up-
dates of its own chain for the color, but stale prefixes of
the other per-region chains for that color. Clients interact
only with their own region’s local copy of the DAG; they
can modify this copy by appending to their own region’s
chain for a color.

Figure 2 shows the FuzzyLog API. A client creates an
instance of the FuzzyLog with the new_instance call,
supplying a single color to play forward. It can play
nodes of this color with the sync call. It can append
a node to a set of colors. We first describe the operation
of these calls in a FuzzyLog deployment with a single
color (i.e., an application with a single data shard).

The sync call is used by the client to synchronize its
state with the FuzzyLog. A sync takes a snapshot of the
set of nodes currently present at the local region’s copy
of a color, and plays all new nodes since the last sync
invocation. Once all new nodes have been provided to
the application via a passed-in callback, the sync returns
with an opaque ID describing the snapshot. The nodes
are seen in a reverse topological sort order of the DAG.
Nodes in each chain are seen in the reverse order of edges
in the chain. Nodes in different chains are seen in an or-
der that respects cross-edges. Nodes in different chains
that are not ordered by cross-edges can be seen in any
order. Note that each node effectively describes a list of
nodes — via its position in a totally ordered chain, and via

explicit pointers for cross-edges — that must be seen be-
fore it. Figure 3 shows the client synchronizing with the
region in panel 1; trailing behind in panels 2 and 3; and
synchronizing once again in panel 4. Snapshot IDs re-
turned by sync calls at different clients can be compared
to check if one subsumes the other.

When a client appends a node to a color with append,
an entry is inserted into the local region’s chain for that
color. The entry becomes the new tail of the chain, and it
has an edge in the DAG pointing to the previous tail; we
define the tail as the only node in a non-empty chain with
no incoming edge. The local region chain imposes a total
order over all updates generated at that region. Further,
outgoing cross-edges are added from the new node to the
last node played by the client from every other per-region
chain for the color. In effect, the newly appended node is
ordered after every node of that color seen by the client.
For example, in Figure 3 (panel 3), a client appends a
new node / to the region’s local chain (after node H),
with a cross-edge to E, which is the latest node in the
remote chain seen by the client.

To garbage collect the FuzzyLog, clients can call trim
on a snapshot ID to indicate that the nodes in it are
no longer required (e.g., because the client stored the
corresponding materialized view in some durable exter-
nal store). A snapshot ID can also be provided to the
new_instance call, in which case playback skips nodes
within the snapshot; this allows a new client to join the
system without playing the FuzzyLog from the begin-
ning.

While the sync and trim calls operate over a single
color, the FuzzyLog supports appending to multiple col-
ors. An append to a set of colors atomically appends the
entry to the local chains for each color. The new node is
reflected by sync calls on any one of the colors involved.
If a node is in multiple colors, trimming it in one color
does not remove it from the other colors it belongs to.

Semantics: Operations to a single color across regions
are causally consistent. In other words, two append op-
erations to the same color issued by clients in different
regions are only ordered if the node introduced by one
of them has already been seen by the client issuing the
other one. In this case, an edge exists in the DAG from
the second node to the first one. The internal structure
of the DAG ensures that the copies at each region con-
verge even though concurrent updates can be applied in
different orders to them: since the clients at each region
modify a disjoint part of the DAG (i.e., they append to
their own per-region chain), there are never any conflicts
when the copies are synchronized.

Operations within a single region are serializable. All
append and sync operations issued by clients within a
region execute in a manner consistent with some serial
execution. This serialization order is linearizable if the

operations are to a single color within the region (i.e., on
a single chain); it does not necessarily respect real-time
ordering when append operations span multiple colors.

Discussion: Designing the FuzzylLog API required
balancing the power of the API against its simplicity and
the feasibility of implementing it. In earlier candidates
for the API, we directly exposed chains to programmers
and allowed append/sync on any subset of them with
a choice of consistency guarantees. This API rendered
a scalable implementation much more difficult; for ex-
ample, guaranteeing a topological sort order for nodes
in a subset of chains required us to potentially traverse
every chain in the system. In addition, the consistency
choices required programmers to reason about the per-
formance and availability of different combinations (e.g.,
strongly consistent multi-appends on chains in different
regions can block due to network partitions). We were
able to drastically simplify the API once we realized the
equivalence between colors and shards: for example, it
makes sense for clients to play a single color since doing
otherwise negates the scaling benefit of sharding; and to
obtain causal consistency within a color since it is geo-
replicated across regions that can partition.

4 FuzzyLog Applications

This section describes how applications can use the
FuzzyLog API with a case study of an in-memory
key-value storage service. In this section, the term
‘server’ refers exclusively to application servers storing
in-memory copies of the key-value map, which in turn
are FuzzylLog clients. We start with a simple design
called LogMap that runs over a single color within a sin-
gle region (i.e., it effectively runs over a single totally
ordered shared log). Each LogMap server has a local in-
memory copy of the map and supports put/get/delete
operations on keys. The server continuously executes a
sync on the log in the background and applies updates
to keep its local view up-to-date. A get operation at the
server simply waits for a sync to complete that started
after it was issued, before accessing the local view and
returning; this ensures that any updates that were ap-
pended to the FuzzyLog before the get was issued are
reflected in the local view, providing linearizability. A
put/delete operation appends a node to the FuzzyLog
describing the update; it then waits for a sync to apply
the update to the local view, at which point it returns.
This basic LogMap design — implemented in just
193 lines of code — enables durability, high availabil-
ity, strong consistency, concurrency control and failure
atomicity. It is identical to previously described de-
signs [7] over a conventional shared log. However, its
reliance on a single total order comes at the cost of scal-
ability, performance, and availability. The remainder of
this section describes how LogMap can be modified to

shard replica

< blue -
O -
| i:y{ . :
- red
= : shard

shard replica

AtomicMap: distributed transactions

NYC data center

SF data center

CRDTMap: causal+ consistency

NYC data center

replica N
(primary)

&

SF data center
& (secondary)

replica

Forking Node

CAPMap: network partition tolerance

Figure 4: FuzzyLog capabilities: AtomicMap, CRDTMap, and CAPMap.

use the FuzzylLog to circumvent each of these limita-
tions.

4.1 Scaling with atomicity within a region

We first describe applications that run within a single
region and need to scale linearly. In ShardedMap (193
LOC), each server stores a shard of the map; each shard
corresponds to a FuzzylLog color. Updates to a particular
shard are appended as nodes of the corresponding color
to the FuzzyLog; each server syncs its local state with
the color of its shard. This simple change to LogMap —
requiring just the color parameter to be set appropriately
on calls to the FuzzyLog — provides linear scalability for
linearizable put/get operations.

The FuzzyLog supports atomicity across shards. If the
atomic operation required is a simple blind multi-put
that doesn’t return a value, all we require is a simple
change to append an update to a set of colors instead
of a single one, corresponding to the shards it modifies.
AtomicMap (201 LOC, Figure 4 (Left)) realizes this de-
sign. One subtle point is that since FuzzyLog multi-color
appends are serializable, AtomicMap is also serializable,
not linearizable or strictly serializable.

To implement read/write transactions with stronger
isolation levels, we use a protocol identical to the one
used by Tango [8]. In TXMap (417 LOC), each server
executes read-write transactions speculatively [8, 10],
tracking read-sets and buffering write-sets. To commit,
the server appends a speculative intention node into the
FuzzyLog to the set of colors corresponding to the shards
being read and written. When a server encounters the in-
tention node in the color it is playing, it appends a sec-
ond node with a yes/no decision to the set of colors. To
generate this decision, the server examines the sub-part
of the transaction touching its own shard and indepen-
dently (but deterministically) validates it (e.g., checking
for read-write conflicts when providing strict serializabil-
ity). A server only applies the transaction to its local state
if it encounters both the original intention and a decision
marked yes for each color involved.

Interestingly, this protocol provides strict serializabil-
ity even though the FuzzyLog itself is only serializable.
Intuitively, within a single color, if a client waits after ap-

pending an intention for a transaction 7 until it plays the
node, it is guaranteed to have seen all transactions that
could appear before T in the serial order. As a result, fu-
ture transactions must appear later in the serial order, en-
suring strict serializability. In a multi-color transaction,
we need to ensure that all transactions in all the colors
involved that could appear before T have been seen. A
decision node conveys two things: that all such transac-
tions in a color have been seen; and whether they con-
flict with the transaction. As in Tango [8], our protocol
requires at least one application server to be available for
each shard in order to generate decision records.

4.2 Weaker consistency across regions

Applications can often tolerate weaker consistency guar-
antees. One example is causal consistency [5], which
roughly requires the following: if a server performs an
update U, after having seen an update Up, then any other
server in the system must see Uy before U;. If U; and
U, were performed independently by servers that did not
see each other’s update, they can be seen in any order.

CRDTMap implements a causally consistent map. In
Figure 4 (Middle), the map is replicated across two re-
gions, one in NYC and another in SF. CRDTMap simply
uses a single color for all updates to a map; in each re-
gion, put operations are appended to the local chain for
the color and propagated asynchronously to the other re-
gion. Since the partial order within a color is exactly the
causal order of updates, each server playing the color ob-
serves updates in a causally consistent order.

To achieve convergence when servers see causally in-
dependent updates in different orders, we employ a de-
sign for CRDTMap based on the Observed-Remove set
CRDT [47], which exploits commutativity to execute
concurrent updates in conflicting orders without requir-
ing rollback logic. The CRDT design achieves this by
predicating deletions performed by a server on put oper-
ations that the server has already seen; accordingly, each
delete node in the DAG lists the put operations that it
subsumes.

4.3 Tolerating network partitions

While CRDTMap can provide availability during net-
work partitions, it does so by sacrificing consistency
even when there is no partition in the system. CAPMap
(named after the CAP conjecture [14]) provides strong
consistency in the absence of network partitions and
causal consistency during them (see Figure 4 (Right)).

As with our other map designs, CAPMap appends en-
tries on put operations and then syncs until it sees the
appended node. Unlike them, CAPMap requires servers
to communicate with each other, albeit in a simple way:
servers route FuzzylLog appends through proxies in other
regions. To perform a put in the absence of network par-
titions, the server routes its append through a proxy in a
primary region; it then syncs with its own region’s copy
of the FuzzyLog until it sees the new node, before com-
pleting the put. As a result, a total order is imposed on
all updates (via the primary region’s chain for the color),
and the map is linearizable.

When a secondary region is partitioned away from the
primary region, servers switch over to appending to the
FuzzyLog in the local region, effectively ‘forking’ the to-
tal order. CAPMap sets a flag on these updates to mark
them as secondary nodes (i.e., appends occurring at the
secondary). Updates that were in-flight during the net-
work partition event may be re-appended to the local
region, appearing in the DAG as identical nodes in the
primary and secondary forks. When the network parti-
tion heals, servers at the secondary stop appending lo-
cally and resume routing appends through the proxy at
the primary. Every routed append includes the snapshot
ID of the last sync call at the secondary client; the proxy
blocks the append until it sees a subsuming snapshot ID
on a sync, ensuring that all the nodes seen by the sec-
ondary client have also been seen by the proxy and are
available at the primary region.

The FuzzyLog explicitly captures the effects of a net-
work partition, including concurrent activity in the re-
gions and duplicate updates. As a result, CAPMap can
relax and reimpose strong consistency via a simple play-
back policy over the FuzzylLog. Any server playing
the DAG after the partition heals enforces a determin-
istic total order over nodes in the forked section: when
it encounters any secondary nodes, it buffers them un-
til the next primary node (i.e., the joining node). All
buffered nodes are then applied immediately before the
joining node (ignoring duplicate updates), ensuring that
all servers observe the same total order and converge to
the same state.

Secondary servers that experience a network parti-
tion continue operating over the local fork, applying
changes to a speculative copy of state. When the partition
heals, each secondary server throws away its speculative

changes after the forking node and replays the nodes in
the forked region of the DAG, applying updates in the
primary fork before re-applying the secondary fork. Our
CAPMap implementation realizes this speculative copy
by cloning state on a fork, and throwing away the clone
when the partition heals; but more efficient copy-on-
write mechanisms could be used as well.

As a result, we obtain causal+ consistency [35] dur-
ing network partitions and linearizability otherwise. Im-
portantly, CAPMap achieves these properties via simple
append and playback policies over the structure and con-
tents of the FuzzylLog.

4.4 Other designs

TXCRDTMap: Two properties discussed so far —
transactions within a single region and weak consis-
tency across regions — can be combined to provide
geo-distributed transactions. By changing 80 LOC in
CRDTMap, we can obtain a transactional CRDT that
provides cross-shard failure atomicity [6] (or equiva-
lently, an isolation guarantee similar to Parallel Snapshot
Isolation [48]).

RedBlueMap: The Fuzzylog can support RedBlue
consistency [32], in which blue operations commute with
each other and with all red operations, while red opera-
tions have to be totally ordered with respect to each other,
but not blue operations. RedBlue consistency can be im-
plemented with a single color. One of the regions is des-
ignated a primary, and ‘Red’ operations are routed to the
primary via a proxy (and thus totally ordered, similar to
CAPMap). ‘Blue’ operations are performed at the local
region. We implemented RedBlueMap in 330 LOC.

COPSMap: While CRDTMap can be scaled by
sharding system state across different per-color in-
stances, an end-client interacting with such a store will
not get causal consistency across shards [35,36]. Con-
cretely, in a system with two regions and two colors, an
end-client in one region may issue a put on a red server,
and subsequently issue a put on a blue server. Once the
blue put propagates to the remote region, a different end-
client may issue a get on a blue server, and subsequently
a get on a red server. If the end-client sees the blue put,
it must also see the red put, since they are causally re-
lated. To provide such a guarantee, the map server can
return a snapshot ID with each operation; the end-client
can maintain a set of the latest returned snapshot IDs for
each color and provide it to the map server on each oper-
ation, which in turn can include it in the appended node.
In such a scheme, when the blue server in the remote re-
gion sees the blue put, it contacts a red server to make
sure the causally preceding red node has been seen by it
and exists in the region. Such a design requires servers
playing different colors to gossip the last snapshot IDs
they have seen for their respective colors. We leave the

COPSMap implementation for future work.

4.5 Garbage collection

As with shared log systems, GC is enormously simplified
by the nature of the workload: the log is used to store a
history of commands rather than first-class data, and can
be trimmed in increasing prefixes. At any time, the appli-
cation can store its current in-memory state (and the as-
sociated snapshot ID) durably on some external storage
system, or alternatively ensure that enough application
servers have a copy of it. Once it does so, it can issue the
trim command on the snapshot ID. Clients that are lag-
ging behind may encounter an already_trimmed error,
in which case they must retrieve the latest durable state
from the external store, and then continue playing the log
from that point.

5 Dapple Design / Implementation

Dapple is a distributed implementation of the FuzzyLog
abstraction, designed with a particular set of require-
ments in mind. The first is scalability: reads and appends
must scale linearly with the number of colors used by the
application and the number of servers deployed by Dap-
ple, assuming that load is balanced evenly across colors.
The second requirement is space efficiency: the Fuzzy-
Log partial order has to be stored compactly, with edges
represented with low overhead. A third requirement is
performance: the append and sync operations must in-
cur low latency and I/O overhead.

Dapple implements the FuzzyLog abstraction over a
collection of storage servers called chainservers, each
of which stores multiple in-memory log-structured ad-
dress spaces. Dapple partitions the state of the FuzzylLog
across these chainservers: each color is stored on a sin-
gle partition. Each partition is replicated via chain repli-
cation [54]. Our current implementation assumes for
durability that storage servers are outfitted with battery-
backed DRAM [17,24]. We first describe operations
against a single color on an unreplicated chainserver.

5.1 Single-color operation

Recall that each FuzzyLog color consists of a set of to-
tally ordered chains, one per region; each region has the
latest copy of its own local chain, but a potentially stale
copy of the other regions’ chains. Dapple stores each
chain on a single log, such that the order of the entries
in the log matches the chain order (i.e., if a chain con-
tains an edge from B to A, B appears immediately after
A in the corresponding log). In a deployment with R re-
gions, each region stores R logs, one per chain. Clients
in the region actively write to one of these (the local
log), while the remaining are asynchronously replicated
from other regions (we call these shadow logs). Each
server exposes a low-level API consisting of three prim-

itives: log-append, which appends an entry to a log;
log-snapshot, which accepts a set of logs and returns
their current tail positions; and log-read, which returns
the log entry at a given position.

Clients implement the sync on a color via a
log-snapshot on the logs for that color, followed
by a sequence of log-reads. The return value of
log-snapshot acts as a vector timestamp for the color,
summarizing the set of nodes present for that color in the
local region; this is exactly the snapshot ID returned by
the sync call. The client library fetches new nodes that
have appeared since its last sync via log-read calls.
When the application calls append on a color, the client
library calls log-append on the local log for that color.
It includes the vector timestamp of nodes seen thus far in
the new entry; as a result, each appended entry includes
pointers to the set of nodes it causally depends on (these
are the cross-edges in the FuzzyLog DAG). On a sync,
the client library checks each entry it reads for dependen-
cies and recursively fetches them before delivering them
to the application. In this manner, the client ensures that
playback of a single color happens in DAG order.

Each chainserver periodically synchronizes with its
counterparts in remote regions, updating the shadow logs
with new entries that originated in those regions. To fetch
updates, the chainserver itself acts as a client to the re-
mote chainserver and uses a sync call; this ensures that
cross-chain dependencies are respected when it receives
remote nodes. Copied-over entries are reflected in sub-
sequent sync calls by clients and played; new entries ap-
pended by the clients then have cross-edges to them.

Dapple replicates each partition via chain replica-
tion. Each log-append operation is passed down
the chain and acknowledged by the tail replica, while
log-snapshot is sent directly to the tail. Once the client
obtains a snapshot, subsequent log-read operations can
be satisfied by any replica in the chain. The choice of
replication protocol is orthogonal to the system design:
we could equally use Multi-Paxos.

5.2 Multi-color operation

The FuzzyLog API supports appending a node to multi-
ple colors. In Dapple, this requires atomically appending
a node to multiple logs: one log per color corresponding
to its local region chain. To do so, Dapple uses a classical
total ordering protocol called Skeen’s algorithm (which
is unpublished but described verbatim in other papers,
e.g., Section 4 in Guerraoui et al. [22]) to consistently
order appends.

Skeen’s original algorithm produces a serializable or-
der for operations by multiple clients across different
subsets of servers. Unfortunately, it is not tolerant to the
failure of its participants. In our setting, each ‘server’
is a replicated partition of chainservers and can be as-

skeen-1 skeen-2
Max = 2.2
C1 > >
» 21, £ 4)2'2 %22 N 4
. . *
51 }'y V4 2.2““.' R _
g '\ ‘ " “ 0’ o
\ 7» K L8
2 Z \ ; LR >
- * 3 g
< 3y 3477
— e
/ Max=3.1 \
skeen-1
skeen-2

Figure 5: Distributed ordering for multi-appends:
servers return timestamps X.Y in phase 1 where X is a
local logical clock and Y is a server-specific nonce.

sumed to not fail. However, the clients in our system are
unreplicated application servers that can crash. We as-
sume that such client failures are infrequent; this pushes
us towards a protocol that is fast in the absence of client
failures and slower but safe when such failures do occur.
Accordingly, we add three fault-tolerance mechanisms
— leases, fencing, and write-ahead logging — to produce
a variant of Skeen’s that completes in two phases in a
failure-free ‘fast’ path, but can safely recover if the ori-
gin client crashes.

Each chainserver maintains a local logical Lamport
clock [28]. All client operations are predicated on rela-
tively coarse-grain leases [20] (e.g., 100 ms), which they
obtain from each server (or the head of the replica chain
for each partition); if the lease expires, or the head of the
replica chain changes, the operation is rejected.

We now describe failure-free operation. The fast path
consists of two phases, and has to execute from start to
completion within the context of a single set of leases,
one per involved partition. For ease of exposition, we
assume each partition has one chainserver replica.

In the first phase, an origin client (i.e., a client originat-
ing a multi-append) contacts the involved chainservers,
each of which responds with a timestamp consisting of
the value of its clock augmented with a server-specific
unique nonce to break ties. Each chainserver inserts the
multi-append operation into a pending queue along with
the returned timestamp. For example, in Figure 5, origin
client C1 contacts S1, which responds with 2.1, where
the local clock value is 2 and the unique nonce is 1. In
addition, the origin client provides a WAL (write-ahead
log) entry that each chainserver stores; this includes the
payload, the colors involved, and the set of leases used
by the multi-append.

Once the client hears back from all the involved chain-
servers, it computes the max across all received times-
tamps, and transmits that back to the chainservers in a

second phase: this max is the timestamp assigned to
the multi-append and is sufficient to serialize the multi-
appends in a region. For example, in Figure 5, client
C1 sends back a max timestamp of 2.2 to servers S1 and
S2. When a chainserver receives this message, it moves
the multi-append from the pending queue to a delivery
queue; it then waits until there is no other multi-append
in the pending queue with a lower returned timestamp,
or in the delivery queue with a lower max timestamp
(i.e., no other multi-append that could conceivably be
assigned a lower max timestamp). Once this condition
is true, the multi-append is removed from the delivery
queue and processed. In Figure 5, server S1 receives a
phase 2 message with a max timestamp of 3.1 from client
C2, but does not respond immediately since it previously
responded to a phase 1 message from client C1 with a
timestamp of 2.1. Once C1 sends a phase 2 message
with a max timestamp of 2.2, S1 knows the ordering for
both outstanding multi-appends and can respond to both
Cl and C2.

The protocol described above completes in two
phases. A third step off the critical path involves the
client sending a clean-up message to delete the per-
append state (the WAL, plus a status bit indicating the
last executed phase) at the chainservers; this is lazily ex-
ecuted after a multiple of the lease time-out, and can be
piggybacked on other messages. If a lease expires be-
fore the two phases are executed at the corresponding
server, or the origin client crashes, it leaves one or more
servers in a wedged state, with the multi-append stuck
in the pending queue and blocking new appends to the
colors involved. After a time-out, the chainserver begins
responding to new append requests with a stuck-err error
message, along with the WAL entry of the stuck multi-
append. A client that receives such an error message can
initiate the recovery protocol for the multi-append.

A client recovering a stuck multi-append (i.e., a re-
covery client) proceeds in three phases: it fences activity
by the origin client or other recovery clients; determines
the wedged state of the system; and completes the multi-
append. The fencing phase involves accessing the lease
set of the original client (which is stored in the WAL),
invalidating it at the servers, and writing a new recov-
ery lease set at a designated test-and-set location on one
of the chainservers. If some other recovery client already
stored a lease set at this location, we wait for that client to
recover the append, fencing it after a time-out. Fencing
ensures that at any given point, only one client is active;
the WAL allows clients to deterministically roll forward
the multi-append.

Correctness: Skeen’s protocol has been proven to
generate a total order by others [22,45]. To prove our
recovery protocol correct, we wrote conventional proofs
as well as a machine-checked proof in Coq. We omit the

full proof for lack of space. Informally, we prove that the
test-and-set mechanism ensures that only one client is ac-
tively mutating the state of the system at any given point
in time. Further, we show that each append can be mod-
eled as a four-stage state machine (some servers in phase
1, some uninitiated; some in phase 1, some in phase 2;
some in phase 2, some completed; all completed). Any
recovery client finds the system in a particular state and
advances it in a manner identical to the non-failing case.

Performance and availability: The append protocol
takes two phases in the fast path and three in the recov-
ery path. The protocol can block if the logs being ap-
pended to reside on different sides of a network parti-
tion; however, the semantics of colors in Fuzzyl.og en-
sure that we only append to logs within a single region.
Single-color appends follow the same protocol as multi-
appends, but complete in a single phase that compresses
the two phases of the fast path.

A subtle point is that a missed fast path deadline will
block other multi-appends from completing, but will not
cause them to miss their own deadlines; they are free to
complete the fast path and receive a timestamp, and only
block in the delivery queue. As a result, a crashed client
will cause a latency spike but not a cascading series of re-
coveries. In addition, this protocol is subject to FLP [18]
and susceptible to livelock, since recovery clients can
fence each other perpetually. Our implementation mit-
igates this by having clients back-off for a small, ran-
domized time-out if they encounter an ongoing recovery,
before fencing it and taking over recovery.

6 Evaluation

We run all our experiments on Amazon EC2 using
c4.2xlarge instances (8 virtual cores, 15 GiB RAM, Intel
Xeon E5-2666 v3 processors). Most of the experiments
run within a single EC2 region; for geo-distributed ex-
periments, we ran across the us-east-2 (Ohio) and the ap-
northeast-1 (Tokyo) regions, which are separated by an
average ping latency of 168ms. In all experiments, we
run Dapple with two replicas per partition unless other-
wise specified. All throughput numbers are without any
application-level batching.

We first report latency micro-benchmarks for Dapple
on a lightly loaded deployment. Figure 6 shows the
distribution of latencies for 16-byte appends involving
one color (top) and two colors on different chainservers
(middle), as well as the latency to recover stuck multi-
appends due to crashed clients (bottom). In all cases,
latency increases with increasing replication factor due
to chain replication. At every replication factor, single-
color appends are executed with lower latency than two-
color appends, which in turn require lower latency than
two-color recovery. This difference in latency arises be-
cause single-color appends execute in a single phase,

51 Single-Color A d: 1 replica =
ol ingle-Color Appends =T
3 replicas E—
25 1 i
0
51 Two-Color Appends E
g sor]
E ST [Ih . . i
2 0
° T T T T T T T
et
; 5T Two-Color Recovery B
50 i
25 -—A—A_.JI]L_A_‘LA_*_A—A_-
0

0 200 400 600 800 1000 1200 1400
Latency (microsecs)

Figure 6: Dapple executes single-color appends in one
phase; multi-color appends in two phases; and recovers
from crashed clients in three phases.

T
Dapple 100%

T
Dapple 0% —+—
Dapple 0.1% —X— Emulated Tango

_é

=1

L 8 Dapple 1%

<& Dapple 10% —©—

. 6

B

2 4

=]

= 2

= 0 =

2 4 6 8 10 12

Num Clients

Figure 7: Dapple scales with workload parallelism, but
a centralized sequencer bottlenecks emulated Tango.

while two-color appends execute in two phases and two-
color recoveries execute in three phases.

The remainder of our evaluation is structured as fol-
lows: First, we evaluate the differences between Dapple
and prior shared log designs (§6.1). Second, we use the
Map variants from §4 to show that Dapple provides linear
scaling with atomicity (§6.2), weaker consistency guar-
antees (§6.3), and network partition tolerance (§6.4). Fi-
nally, we describe a ZooKeeper clone over Dapple (§6.5).

6.1 Comparison with shared log systems

In this experiment, we show that centralized sequencers
in existing shared log systems fundamentally limit scal-
ability. Shared log systems such as Tango [8] and
vCorfu [57] use a centralized sequencer to determine
a unique monotonic sequence number for each append.
Based on its sequence number, each append is deter-
ministically replicated on a different set of servers. The
sequencer therefore becomes a centralized point of co-
ordination, even when requests execute against differ-
ent application-level data-structures or shards. In con-
trast, Dapple allows applications to naturally express
their sharding requirements via colors, and can execute
appends to disjoint sets of colors independently.

We emulate Tango’s append protocol in Dapple by us-

7
of AtomicMap / Dapple servers =1/8 ——
2/8 1 4
o g/ 8 Immm |
b 16/ 16—
3 32/ 16 w—
a
Nt
5 i
= i
T T T ’T‘_'—“
0% 019 1% 104, 1004,

Workload (% of multi-shard puts)
Figure 8: AromicMap scales throughput while support-
ing multi-shard transactions. Each bar labelled N / K
shows throughput with N AtomicMap servers running
against a K-server Dapple deployment.

ing five chainserver partitions to store data, and a sin-
gle unreplicated server to disperse sequence numbers;
given a sequence number, appends are deterministically
written (via a Dapple-append) to one of the five chain-
server partitions in a round-robin fashion. We com-
pare this to a FuzzyLog deployment that uses five chain-
server partitions. The number of partitions and replica-
tion factor in emulated Tango and Dapple are identical,
while emulated Tango uses an extra server for sequenc-
ing. We run a workload where each client appends to
a particular color, mixing single-color appends with a
fixed percentage of appends that include a second, ran-
domly picked color. Figure 7 shows average throughput
over a 10-second run for workloads with different per-
centages of two-color appends. Emulated Tango cannot
scale beyond four clients due to its use of a centralized
sequencer. Dapple scales near-linearly when the work-
load is fully partitionable (0% multi-color appends), is
2X faster at 1% multi-color appends, and matches Tango
at 10% multi-color appends. At 100% multi-color ap-
pends, Dapple performs worse because the required par-
tial order is nearly a total order, which Tango provides
more efficiently.

6.2 Scalable multi-shard atomicity

The FuzzyLog allows applications to scale within a re-
gion by sharding across colors, and supports multi-shard
transactions via multi-color appends. We now demon-
strate the scalability of an AtomicMap (Section 4.1),
which partitions its state across multiple colors. Each
AtomicMap server is a Dapple client, and is affinitized
with a unique color (corresponding to a logical parti-
tion of the AtomicMap’s state). Each client performs a
combination of single puts against its local partition and
multi-puts against its partition and a randomly selected

remote partition.

Figure 8 shows the results of the AtomicMap ex-
periment. For different percentages of multi-puts in
the workload (on the x-axis), we vary system size and
plot throughput on the y-axis. We use between 8 and
16 chainservers in Dapple (deployed without replication
since we ran into EC2 instance limits). We use 8-byte
keys and 8-byte values to emulate a workload where the
AtomicMap acts as an index storing pointers to an ex-
ternal blob store. Keys for put operations are selected
uniformly at random from a key space of 1M keys.

Figure 8 shows that under 0% multi-shard puts,
throughput scales linearly from 1 to 16 AtomicMap
servers. The throughput jump from 16 to 32 servers is
slightly less than 2x because we pack two Dapple clients
per AtomicMap server at the 32 client data point (due
to the EC2 instance limit). As the percentage of multi-
shard puts increases from 0.1% to 100%, scalability and
absolute throughput degrade gracefully. This is expected
due to the extra cost of executing multi-shard puts (each
requires a two-phase multi-color append).

6.3 Weaker consistency guarantees

Dapple allows geo-distributed applications to perform
updates to the same color with low latency. By compos-
ing a single color out of multiple totally ordered chains,
one per geographical region, a client in a particular re-
gion can append updates to a color without performing
any coordination across regions in the critical path. This
section demonstrates this capability via a CRDTMap.

In Figure 9, we host a single, unpartitioned CRDTMap
on five application servers (i.e., Dapple clients); we lo-
cate each in a virtual region with its own Dapple copy,
all running in the same EC2 region. Four of these servers
are writers issuing put operations at a controlled aggre-
gate rate (left y-axis), while the fifth is a reader issuing
get operations on the CRDTMap. Each writing server
uses four writer processes. The gets observe some fron-
tier of the underlying DAG, and can therefore lag behind
by a certain number of puts (right y-axis), but are fast,
local operations. Midway through the experiment, we
spike the put load on the system; this does not slow down
get operations at the reader (not shown in the graph), but
instead manifests as staleness.

6.4 Network partition tolerance

Dapple allows applications to provide strong consistency
during normal operation and weak consistency under
network partitions. In this experiment, we demonstrate
this capability by running CAPMap across a primary and
a secondary region (us-east-2 and ap-northeast-1, respec-
tively). The experiment lasts for 14 seconds. From 0-
6 seconds, the primary and secondary regions are con-
nected. Between 6-8 seconds, we simulate a network

1.5 4
Staleness (right y-axis) ——
CRDTMap puts/sec (left y-axis) =

0 T T T T T I—I T

S P
S

(=]

[) [V e \ N |
(= = (= - =

08
06
001

Time Elapsed (secs)
Figure 9: CRDTMap provides a trade-off between
throughput and staleness.

partition between the primary and secondary. Finally,
from 8-14 seconds, connectivity between the primary
and secondary is restored. Each region runs two servers,
one issuing puts and one issuing gets. We measure the
latency of gets and puts (y-axis), against the wall-clock
time they are issued at (x-axis).

Figure 10 shows the results of the experiment. In nor-
mal operation (0 to 6 seconds), all updates are stored in
a single primary chain, and both regions get strong con-
sistency; the secondary has high latencies for puts and
gets due to the 168 ms inter-region roundtrip it incurs
to access the primary chain. At 6 seconds, the network
between the regions partitions; the primary continues to
obtain strong consistency and low latency, but the sec-
ondary switches to weaker consistency, storing its up-
dates on a local secondary chain (and obtaining much
lower latency for puts/gets in exchange for the weaker
consistency). At 8 seconds, the network heals; the sec-
ondary appends a joining node to the primary chain via
a proxy in the primary region. As part of this joining
request, the secondary provides a snapshot ID reflect-
ing the last node it appended to its local chain. The
proxy at the primary waits until the nodes in the snap-
shot are replicated to the primary region and seen by it
before completing the joining append. The joining ap-
pend causes a high latency put by the secondary just after
the partition heals, and a spike in get latency on the pri-
mary as it plays nodes appended to the secondary chain
during the partition.

6.5 End-to-end applications

We implemented a ZooKeeper clone, DappleZK in 1881
LOC of Rust. DappleZK partitions a namespace across
a set of servers, each of which acts as a Dapple client,
storing a partition of the namespace in in-memory data-
structures backed by a FuzzyLog color.

This section compares DappleZK’s performance with

Throughput (Ms of puts/sec)
1
[\S)
Staleness (Ms of missing puts)

100 | :
10 ¢ primary puts 4

0.1°F

100 ;... “essessessttttttettttttttane R R SRR LR DL LRI IR IR RLLY
10 ¢ secondary puts -

0.1¢

100 | ' :
10 ¢ primary gets 4

Latency (ms)

0.1

100 ;. AR R PR 1 I I RN R LNIS
10 | . secondary gets
1L 888 E

0.1 L - 1 L I
0 2000 4000 6000 8000 10000 12000 14000

Time Elapsed (ms)

Figure 10: CAPMap switches between linearizability
and causal+ consistency during network partitions.

ZooKeeper. Each DappleZK server is responsible for
an independent shard of the ZooKeeper namespace, and
atomically creates and renames files. Create operations
are restricted to a single DappleZK shard. Each rename
atomically moves a file from one DappleZK shard to an-
other via the distributed transaction protocol described in
Section 4.1.

We partition the ZooKeeper namespace across 12
DappleZK shards, and run one DappleZK server per
shard. We deploy Dapple with either one or two parti-
tions. Each partition is configured with three replicas.
DappleZK uses two coloring schemes; a color per parti-

_ 4000 DappleZK, color per ZK shard (2 partitions) =——
8 3500 | (1 partition) —
<z DappleZK, color per partition (2 partitions) E===
£ 3000 [M (1 partition) E==—_
8 ZooKeeper (2 partitions) H=
S 2500 (1 partition) NE—-—
1)

g/ 2000 [T
2 1500 i 1
=

2 1000] 1
e

£ 500] .

0T T
0% 019 1% 10y, 1004,

Workload (% atomic renames)

Figure 11: DappleZK exploits Dapple’s partial ordering
to implement a scalable version of the ZooKeeper APL.

tion and a color per DappleZK shard. In the color per par-
tition deployment, each color holds updates correspond-
ing to multiple DappleZK server shards.

We run conventional ZooKeeper with three replicas,
and also include a partitioned ZooKeeper deployment
with two partitions. Our ZooKeeper deployments keep
their state in DRAM to enable a fair comparison. Note
that ZooKeeper does not support atomic renames; we
emulated renames on it by executing a delete and cre-
ate operation in succession. We include the ZooKeeper
comparison for completeness; we expect the FuzzylLog
single-partition case to outperform ZooKeeper largely
due to the different languages used (Rust vs. Java) and
the difference between prototype and production-quality
code.

Figure 11 shows the results of the experiment. We
vary the percentage of renames in the workload on the
x-axis, and plot throughput on the y-axis. Each x-axis
point shows a cluster of bars corresponding to the four
DappleZK configurations and two ZooKeeper configura-
tions. With a single color and a single partition, every
DappleZK server stores its state on the same color. Dap-
pleZK servers perform their appends and reads against
the same color, which limits their throughput. With two
partitions, the number of DappleZK servers per color is
halved, which increases throughput. When we switch
to a color per DappleZK server, throughput increases
dramatically because requests from different DappleZK
servers do not need to be serialized against the same
color. The addition of another partition further increases
throughput because the colors can be spread across two
partitions. When deployed with a single partition, Dap-
ple servers were overloaded, which led to extra schedul-
ing overhead and caused the two partition case to out-
perform a single partition by over 2X (in both color per
ZK shard and color per partition cases). With an increas-
ing fraction of atomic renames, throughput decreases be-
cause DappleZK must perform a distributed transaction
across the involved DappleZK servers. In comparison to
DappleZK, ZooKeeper provided 36K and 66K ops/s with
one and two partitions respectively.

7 Related Work

Abstractions for ordering updates in a distributed sys-
tem have a long history. Examples include Virtual Syn-
chrony [13, 53], State Machine Replication [46], View-
stamp Replication [42], Multi-Paxos [52], and newer
approaches such as Raft [43]. Most of these impose
a total order on updates; the exceptions track particu-
lar partial orders imposed by operation commutativity
(pessimistically [30,37] and optimistically [26]), causal
consistency (as in Virtual Synchrony and Lazy Replica-
tion [27]), or network partitions (as in Extended Virtual
Synchrony [38]). In contrast, the FuzzyLog expresses the

partial orders relating to both causality and data sharding
within a single ordering abstraction.

FuzzylLog designs for providing weaker consistency
are informed by a number of systems: COPS [35] and
Eiger [36] provide causal consistency in a partitioned
store, while Bayou allows for disconnected updates and
eventual reconciliation [44,49]. TARDiS [15] exposes
branch-on-conflict as an abstraction in a fully replicated,
multi-master store. In contrast to the TARDiS DAG, the
FuzzyLog allows applications to construct a wider range
of partial orders (e.g., CAPMap branches on network
partitions rather than conflicts), and enables distributed
transactions via color-based partitioning.

A number of systems provide distributed transactions
over addresses or objects [4,34]. Recent systems lever-
age modern networks such as RDMA and Infiniband to
enable high-speed transactions [17,31]. FuzzyLog pro-
vides a lower layer of abstraction, which in turn sup-
ports general-purpose transactions using shared log tech-
niques [8, 10]. There has also been recent interest in
improving distributed transaction throughput and latency
via techniques such as transaction chopping [39, 58, 59,
61]. These mechanisms could be employed by transac-
tional FuzzylLog applications.

Finally, the FuzzyLog is heavily inspired by shared log
designs from research [7, 8, 10] and industry [1,2,55].

8 Conclusion

The shared log approach simplifies the construction of
control plane services, but tightly bounds the scalability
and consistency of the resulting systems. The FuzzylLog
abstraction — and its implementation in Dapple — extends
the shared log approach to partial orders, allowing appli-
cations to scale linearly without sacrificing transactional
guarantees, obtain a range of consistency guarantees, and
switch seamlessly between these guarantees when the
network partitions and heals. Crucially, applications can
achieve these capabilities in hundreds of lines of code via
simple, data-centric operations on the FuzzylLog, retain-
ing the core simplicity of the shared log approach.

Acknowledgments

This work was funded primarily by an NSF AitF grant
(CCF-1637385), and partly by NSF grants CCF-1650596
and IIS-1718581. We thank Zhong Shao for his signif-
icant input from the beginning of the project. We also
thank Luis Rodrigues and Yair Amir for feedback on
the ideas behind the FuzzylLog. Vijayan Prabhakaran
and Hakim Weatherspoon provided valuable comments
on early drafts of this paper. Finally, we would like to
thank Kang Chen for shepherding the paper, as well as
the anonymous reviewers for their insightful reviews.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

Facebook logdevice. https://code.facebook.
com/posts/357056558062811/1logdevice-a-
distributed-data-store-for-logs/.

VMware CorfuDB.
CorfuDB/CorfuDB.

https://github.com/

Zlog transactional key-value store. http:
//noahdesu.github.io/2016/08/02/zlog-
kvstore-intro.html.

AGUILERA, M. K., MERCHANT, A., SHAH, M.,
VEITCH, A., AND KARAMANOLIS, C. Sinfonia: a
new paradigm for building scalable distributed sys-
tems. In ACM SOSP 2007.

AHAMAD, M., NEIGER, G., BURNS, J. E,,
KoHL1, P., AND HuTTO, P. W. Causal mem-
ory: Definitions, implementation, and program-
ming. Distributed Computing 9, 1 (1995), 37-49.

AKKOORATH, D. D., TomMsIC, A. Z., BRAVO,
M., L1, Z., CraIN, T., BIENIUSA, A.,
PREGUICA, N., AND SHAPIRO, M. Cure: Strong
semantics meets high availability and low latency.
In IEEE ICDCS 2016.

BALAKRISHNAN, M., MALKHI, D., PRAB-
HAKARAN, V., WOBBER, T., WEI, M., AND
DAvis, J. D. Corfu: A shared log design for flash
clusters. In USENIX NSDI 2012.

BALAKRISHNAN, M., MALKHI, D., WOBBER,
T., WU, M., PRABHAKARAN, V., WEI, M.,
Davis, J. D., RA0, S., Zou, T., AND ZUCK, A.
Tango: Distributed Data Structures over a Shared
Log. In ACM SOSP 2013.

BERNSTEIN, P. A., AND DAS, S. Scaling Opti-
mistic Concurrency Control by Approximately Par-
titioning the Certifier and Log. [EEE Data Eng.
Bull. 38,1 (2015), 32-49.

BERNSTEIN, P. A., DAs, S., DING, B., AND
PILMAN, M. Optimizing Optimistic Concur-
rency Control for Tree-Structured, Log-Structured
Databases. In ACM SIGMOD 2015.

BERNSTEIN, P. A., REID, C. W., AND Das, S.
Hyder-A Transactional Record Manager for Shared
Flash. In CIDR 2011.

BEVILACQUA-LINN, M., BYRON, M., CLINE, P.,
MOORE, J., AND MUIR, S. Sirius: Distributing
and Coordinating Application Reference Data. In
USENIX ATC 2014.

[13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

BIRMAN, K. P., AND JOSEPH, T. A. Reliable
communication in the presence of failures. ACM
Transactions on Computer Systems (TOCS) 5, 1
(1987), 47-76.

BREWER, E. A. Towards robust distributed sys-
tems. In PODC 2000.

CROOKS, N., Pu, Y., ESTRADA, N., GUPTA, T.,
ALVISI, L., AND CLEMENT, A. Tardis: A branch-
and-merge approach to weak consistency. In ACM
SIGMOD 2016.

DEFAGO, X., SCHIPER, A., AND URBAN, P. Total
order broadcast and multicast algorithms: Taxon-
omy and survey. ACM Computing Surveys (CSUR)
36, 4 (2004), 372-421.

DRAGOJEVIC, A., NARAYANAN, D., NIGHTIN-
GALE, E. B., RENZELMANN, M., SHAMIS, A.,
BADAM, A., AND CASTRO, M. No compromises:
distributed transactions with consistency, availabil-
ity, and performance. In ACM SOSP 2015.

FISCHER, M. J., LYNCH, N. A., AND PATERSON,
M. S. Impossibility of distributed consensus with
one faulty process. Journal of the ACM (JACM) 32,
2 (1985), 374-382.

GOEL, A. K., POUND, J., AucH, N., BuM-
BULIS, P., MACLEAN, S., FARBER, F,
GROPENGIESSER, F., MATHIS, C., BOD-
NER, T., AND LEHNER, W. Towards scalable
real-time analytics: an architecture for scale-out of
OLXxP workloads. In VLDB 2015.

GRAY, C., AND CHERITON, D. Leases: An ef-
ficient fault-tolerant mechanism for distributed file
cache consistency. In ACM SOSP 1989.

GRAY, J. N. Notes on data base operating systems.
In Operating Systems. Springer, 1978, pp. 393-481.

GUERRAOUI, R., AND SCHIPER, A. Total order
multicast to multiple groups. In IEEE ICDCS 1997.

HERLIHY, M. P., AND WING, J. M. Linearizabil-
ity: A Correctness Condition for Concurrent Ob-
jects. ACM Trans. Program. Lang. Syst. 12, 3 (July
1990), 463-492.

KALIA, A., KAMINSKY, M., AND ANDERSEN,
D. G. FaSST: fast, scalable and simple dis-
tributed transactions with two-sided (RDMA) data-
gram RPCs. In USENIX OSDI 2016.

KAMINSKY, A. K. M., AND ANDERSEN, D. G.
Design guidelines for high performance RDMA
systems. In USENIX ATC 2016.

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

KAPRITSOS, M., WANG, Y., QUEMA, V.,
CLEMENT, A., ALVISI, L., DAHLIN, M., ET AL.
All about Eve: Execute-Verify Replication for
Multi-Core Servers. In USENIX OSDI 2012.

LADIN, R., LISKOV, B., SHRIRA, L., AND GHE-
MAWAT, S. Providing high availability using lazy
replication. ACM Transactions on Computer Sys-
tems (TOCS) 10, 4 (1992), 360-391.

LAMPORT, L. Time, clocks, and the ordering of

events in a distributed system. Communications of
the ACM 21,7 (1978), 558-565.

LAMPORT, L. The part-time parliament. ACM
Transactions on Computer Systems (TOCS) 16, 2
(1998), 133-169.

LAMPORT, L. Generalized consensus and paxos.
Tech. rep., Technical Report MSR-TR-2005-33,
Microsoft Research, 2005.

LEE, C., PARk, S. J., KEJRIWAL, A., MAT-
SUSHITA, S., AND OUSTERHOUT, J. Implement-
ing linearizability at large scale and low latency. In
ACM SOSP 2015.

L1, C., PORTO, D., CLEMENT, A., GEHRKE, J.,
PREGUICA, N. M., AND RODRIGUES, R. Making
Geo-Replicated Systems Fast as Possible, Consis-
tent when Necessary. In USENIX OSDI 2012.

L1, J., MICHAEL, E., SHARMA, N. K., SZEK-
ERES, A., AND PORTS, D. R. Just say NO to Paxos
overhead: Replacing consensus with network or-
dering. In USENIX OSDI 2016.

Liskov, B., CASTRO, M., SHRIRA, L., AND
ADYA, A. Providing persistent objects in dis-
tributed systems. In ECOOP 1999.

LLoyD, W., FREEDMAN, M. J., KAMINSKY, M.,
AND ANDERSEN, D. G. Stronger Semantics for
Low-Latency Geo-Replicated Storage. In USENIX
NSDI 2013.

LLoyD, W., FREEDMAN, M. J., KAMINSKY, M.,
AND ANDERSEN, D. G. Stronger semantics for
low-latency geo-replicated storage. In USENIX
NSDI 2013.

MORARU, I., ANDERSEN, D. G., AND KAMIN-
SKY, M. There is more consensus in egalitarian
parliaments. In ACM SOSP 2013.

MOSER, L. E., AMIR, Y., MELLIAR-SMITH,
P. M., AND AGARWAL, D. A. Extended virtual
synchrony. In IEEE ICDCS 1994.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

Mu, S., Cul, Y., ZHANG, Y., LLOYD, W., AND
L1, J. Extracting More Concurrency from Dis-
tributed Transactions. In USENIX OSDI 2014.

Mu, S., NELSON, L., LLoYD, W., AND L1, J.
Consolidating Concurrency Control and Consensus
for Commits under Conflicts. In USENIX OSDI
2016.

NAwaAB, F., ARORA, V., AGRAWAL, D., AND
EL ABBADI, A. Chariots: A Scalable Shared Log
for Data Management in Multi-Datacenter Cloud
Environments. In EDBT (2015), pp. 13-24.

OKI, B. M., AND Liskov, B. H. Viewstamped
replication: A new primary copy method to sup-
port highly-available distributed systems. In ACM
PODC 1988.

ONGARO, D., AND OUSTERHOUT, J. K. In
search of an understandable consensus algorithm.
In USENIX ATC 2014.

PETERSEN, K., SPREITZER, M. J., TERRY, D. B.,
THEIMER, M. M., AND DEMERS, A. J. Flexible
update propagation for weakly consistent replica-
tion. In ACM SOSP 1997.

RODRIGUES, L., GUERRAOUI, R., AND
SCHIPER, A. Scalable atomic multicast. In
IEEE ICCCN 1998.

SCHNEIDER, F. B. The state machine approach:
A tutorial. In Fault-tolerant distributed computing
(1990), Springer, pp. 18—41.

SHAPIRO, M., PREGUICA, N., BAQUERO, C.,
AND ZAWIRSKI, M. A comprehensive study of
convergent and commutative replicated data types.
PhD thesis, Inria—Centre Paris-Rocquencourt; IN-
RIA, 2011.

SOVRAN, Y., POWER, R., AGUILERA, M. K.,
AND LI, J. Transactional storage for geo-replicated
systems. In ACM SOSP 2011.

TERRY, D. B., THEIMER, M. M., PETERSEN,
K., DEMERS, A. J., SPREITZER, M. J., AND
HAUSER, C. H. Managing update conflicts in
Bayou, a weakly connected replicated storage sys-
tem. In ACM SOSP 1995.

THOMSON, A., AND ABADI, D. J. CalvinFS:
Consistent WAN Replication and Scalable Meta-
data Management for Distributed File Systems. In
USENIX FAST 2015.

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

THOMSON, A., DIAMOND, T., WENG, S.-
C., REN, K., SHAO, P.,, AND ABADI, D. .
Calvin: Fast Distributed Transactions for Parti-
tioned Database Systems. In ACM SIGMOD 2012.

VAN RENESSE, R., AND ALTINBUKEN, D. Paxos

made moderately complex. ACM Computing Sur-
veys (CSUR) 47, 3 (2015), 42.

VAN RENESSE, R., BIRMAN, K. P., AND MAF-
FEIS, S. Horus: A flexible group communication
system. Communications of the ACM 39, 4 (1996),
76-83.

VAN RENESSE, R., AND SCHNEIDER, F. B. Chain
Replication for Supporting High Throughput and
Auvailability. In USENIX OSDI 2004.

VERBITSKI, A., GUPTA, A., SAHA, D., BRAH-
MADESAM, M., GUPTA, K., MITTAL, R., KRISH-
NAMURTHY, S., MAURICE, S., KHARATISHVILI,
T., AND BAO, X. Amazon aurora: Design consid-
erations for high throughput cloud-native relational
databases. In ACM SIGMOD 2017.

WEI, M., ROSSBACH, C., ABRAHAM, 1.,
WIEDER, U., SWANSON, S., MALKHI, D., AND
TA1, A. Silver: a scalable, distributed, multi-
versioning, always growing (Ag) file system. In
USENIX HotStorage 2016.

WEI, M., TAIL, A., ROSSBACH, C. J., ABRAHAM,
1., MUNSHED, M., DHAWAN, M., WIEDER, U.,
FRITCHIE, S., SWANSON, S., FREEDMAN, M. J.,
ET AL. vCorfu: A Cloud-Scale Object Store on a
Shared Log. In In USENIX NSDI 2017.

XIE, C., Su, C., KAPRITSOS, M., WANG, Y.,
YAGHMAZADEH, N., ALVISI, L., AND MAHA-
JAN, P. Salt: Combining ACID and BASE in a
Distributed Database. In USENIX OSDI 2014.

X1g, C., Su, C., LiTTLEY, C., ALVISI, L.,
KAPRITSOS, M., AND WANG, Y. High-
performance ACID via modular concurrency con-
trol. In ACM SOSP 2015.

ZHANG, I., SHARMA, N. K., SZEKERES, A., KR-
ISHNAMURTHY, A., AND PORTS, D. R. Build-
ing consistent transactions with inconsistent repli-
cation. In ACM SOSP 2015.

ZHANG, Y., POWER, R., ZHOU, S., SOVRAN, Y.,
AGUILERA, M. K., AND LI, J. Transaction chains:
achieving serializability with low latency in geo-
distributed storage systems. In ACM SOSP 2013.

