
Black-box Concurrent Data Structures for NUMA Architectures

Irina Calciu
VMware Research

Siddhartha Sen
Microsoft Research

Mahesh Balakrishnan
Yale University

Marcos K. Aguilera
VMware Research

Abstract
High-performance servers are non-uniform memory access
(NUMA) machines. To fully leverage these machines, pro-
grammers need efficient concurrent data structures that are
aware of the NUMA performance artifacts. We propose Node
Replication (NR), a black-box approach to obtaining such
data structures. NR takes an arbitrary sequential data struc-
ture and automatically transforms it into a NUMA-aware con-
current data structure satisfying linearizability. Using NR re-
quires no expertise in concurrent data structure design, and
the result is free of concurrency bugs. NR draws ideas from
two disciplines: shared-memory algorithms and distributed
systems. Briefly, NR implements a NUMA-aware shared log,
and then uses the log to replicate data structures consistently
across NUMA nodes. NR is best suited for contended data
structures, where it can outperform lock-free algorithms by
3.1x, and lock-based solutions by 30x. To show the benefits
of NR to a real application, we apply NR to the data struc-
tures of Redis, an in-memory storage system. The result out-
performs other methods by up to 14x. The cost of NR is ad-
ditional memory for its log and replicas.

1. Introduction
Concurrent data structures are used everywhere in the soft-
ware stack, from the kernel (e.g., priority queues for schedul-
ing), to application libraries (e.g., tries for memory allo-
cation), to applications (e.g., balanced trees for indexing).
These data structures, when inefficient, can cripple perfor-
mance.

Due to recent architectural changes, high-performance
servers today are non-uniform memory access (NUMA) ma-
chines. In such machines, the cores are grouped into nodes,
where each node has some local cache and memory. Al-
though a node can access the memory of other nodes, it
is faster to access local memory and to share cache lines
within a node. To fully harness the power of NUMA, software
designers need NUMA-aware data structures, which reduce

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’17, April 08 - 12, 2017, Xi’an, China

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4465-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3037697.3037721

cross-node communication and minimize accesses to remote
caches and memory [17, 21, 50]. Without these characteris-
tics, performance falters as we add more nodes (§2).

Unfortunately, there are few NUMA-aware concurrent
data structures, and designing new ones is hard. The key
challenge is how to deal with contention on the data struc-
ture, where simple techniques limit concurrency and scale
poorly, while efficient techniques are complex, error-prone,
and rigid (§3).

We propose a new technique called Node Replication
(NR) to obtain NUMA-aware data structures, by automati-
cally transforming any sequential data structure into a cor-
responding concurrent NUMA-aware structure. NR is general
and black-box: it requires no inner knowledge of the struc-
ture and no expertise in NUMA software design. The result-
ing concurrent structure provides strong consistency in the
form of linearizability [38].

NR combines ideas from two disciplines: distributed sys-
tems and shared-memory algorithms. NR maintains per-node
replicas of an arbitrary data structure and synchronizes them
via a shared log (an idea from distributed systems [6, 43,
55]). The shared log is realized by a hierarchical, NUMA-
aware design that uses flat combining [30] within nodes
and lock-free appending across nodes (ideas from shared-
memory algorithms). With this interdisciplinary approach,
only a handful of threads need to synchronize across nodes,
so most synchronization occurs efficiently within each node.

We evaluate NR to determine when it performs well com-
pared to the alternatives. We find that NR excels under con-
tention, in which an operation often affects the output of
other operations. On a contended priority queue and a dictio-
nary, NR can outperform lock-free algorithms by up to 2.4x
and 3.1x with 112 threads; and NR can outperform a lock-
based solution by 8x and 30x on the same data structures. To
demonstrate the benefits to a real application, we apply NR
to the data structures of the Redis storage server [1]. Many
systems have shown how servers can scale the handling
of network requests and minimize RPC bottlenecks [39,
46, 47, 52, 59]. There is less research on how to scale the
servicing of the requests. These systems either implement
a simple service (e.g., get/put) that can partition requests
across cores [39, 46]; or they develop sophisticated concur-
rent data structures from scratch to support more complex
operations [47], and doing this requires expertise in con-
current algorithms. This is where our black-box approach

core

cache

core

cache

core

cache

core

cache

cache

core

cache

core

cache

core

cache

core

cache

cache

memory memory

node node

Figure 1. NUMA architecture: cores are grouped into nodes,
each with its local memory. Nodes are connected by an
interconnect, so that cores in one node can access the remote
memory of another node, but these accesses come at a higher
cost. Typically, cores have local caches, and cores on a node
share a last level cache.

comes handy: NR provides these concurrent data structures
automatically from sequential implementations. For Redis,
we were able to convert a sequential sorted set into a con-
current one with just 20 new lines of wrapper code. More-
over, experiments show that NR outperforms data structures
obtained from other methods by up to 14x.

Our approach has three limitations. First, NR incurs space
overhead due to replication: it consumes n times more mem-
ory, where n is the number of nodes. Thus, NR is best suited
for smaller structures that occupy just a fraction of the avail-
able memory (e.g., up to hundreds of MB). Second, NR is
blocking: a thread that stops executing operations can block
the progress of other threads; in practice, we did not find
that to be a problem as long as threads keep executing oper-
ations on the data structure. Finding a non-blocking variant
of NR is an interesting research direction. Finally, NR may
be outperformed by non-black-box algorithms crafted for a
given data structure—for example, a lock-free skip list run-
ning on low-contention workloads, or a NUMA-aware stack.
Thus, the generality of black-box methods has some cost.
However, in some cases NR outperforms even the crafted al-
gorithms; we observe this for the same lock-free skip list
running instead on high-contention workloads.

2. Background, motivation, goals
NUMA architectures. Our work is motivated by recent
trends in computer architecture; to accommodate many
cores, machines have adopted a NUMA architecture, where
cores are clustered into groups called NUMA nodes or simply
nodes (Figure 1). Each core has one or more private caches
and each node has a shared cache. Sharing a cache line
within a node is more efficient than across nodes because the
cache coherence protocol operates more efficiently within a
node. Each node has some local memory, and a core can ac-
cess local memory faster than memory in a remote node. A
similar architecture—non-uniform cache access (NUCA)—
has a single shared memory but nodes have local caches as
in NUMA. Our ideas are applicable to NUCA too.

NUMA is everywhere now. A high-performance Intel
server might have 8 processors (nodes), each with 18 cores.
AMD and Oracle have similar machines. To best use these
cores, we need appropriate concurrent data structures.

Concurrent data structures. Concurrent data structures
permit many threads to operate on common data using a
high-level interface. When accessed concurrently, the se-
mantics are typically defined by a property called lineariz-
ability [38], which provides strong consistency. Lineariz-
ability requires that each operation appear to take effect in-
stantly at some point between the operation’s invocation and
response.

The key challenge in designing concurrent data structures
is dealing with operation contention, which occurs when an
operation often affects the output of another operation. More
precisely, given an execution, we say that an operation af-
fects another if the removal of the first causes the second to
return a different result. For example, a write of a new value
affects a subsequent read. A workload has operation con-
tention if a large fraction of operations affect a large fraction
of operations occurring soon after them. Examples include
a storage system where users read and write a popular ob-
ject, a priority queue where threads often remove the mini-
mum element, a stack where threads push and pop data, and
a bounded queue where threads enqueue and dequeue data.
Non-examples include read-only workloads and write-only
workloads where writes return void. Operation contention
is challenging because operations must observe each other
across cores.

Goals and non-goals. Our goal is to provide NUMA-aware
concurrent data structures. We are particularly interested in
developing structures that work well under operation con-
tention, where existing methods (§3) perform poorly: their
performance drops with more cores, especially as we cross
node boundaries (§8). We want to do better. The ideal is
to provide perfect scalability with the number of cores.
With update-heavy contended workloads, we want to at least
avoid the performance drops, so that the parallelizable parts
of the application can benefit from more cores without being
hindered by the data structures. Further, we want to obtain
data structures using black-box techniques, so that any data
structure can be made concurrent and NUMA-aware without
effort or knowledge about NUMA programming. Moreover,
we would like to provide strong consistency semantics (lin-
earizability). We do not expect our black-box data structures
to always outperform specialized data structures with tai-
lored optimizations, but we hope to be competitive in a broad
class of workloads. We do not wish to automatically convert
single-threaded applications to multiple threads; many appli-
cations are multi-threaded already; if they are not, converting
them remains a manual engineering procedure: applications
have a broad interface, unlike sequential data structures, so
are less amenable to black-box methods.

3. Related work
Data structures. Currently, developers have five options
when they need a NUMA-aware data structure. The first is to
use existing NUMA solutions, but there are very few NUMA
data structures available [17, 50, 53].

The second option is to use existing concurrent data
structures oblivious of NUMA—called uniform memory ac-
cess (UMA) structures—including lock-based, lock-free, and
wait-free algorithms. These algorithms are not sensitive to
the asymmetry and limitations of NUMA, which potentially
hinders their performance [9, 42, 44, 45]. Moreover, these
solutions are not applicable when applications need custom
data structures or compose many data structures, which is
the case of Redis.

The third option is to use existing black-box methods.
But such methods are currently targeted at UMA; like the
second option, they are not designed for NUMA. Herlihy’s
universal construction [33] is a theoretical breakthrough in
wait-free algorithms; however, despite improvements (e.g.,
[5, 24]), it remains impractical due to high copying over-
heads. OpLog [12] uses local logs to scale updates that re-
turn void, but underperforms on reads or updates that return
values. Predictive log synchronization [57] scales, but pro-
vides weak consistency and is limited to data structures with
prediction mechanisms. Delegation [16] reduces synchro-
nization overheads, but it does not scale to many cores. Flat
combining [30]—which we leverage within each node—is
designed to mitigate the cost of coordination, but does not
scale well because it restricts concurrency. Parallel flat com-
bining [31] improves scalability with many combiners but
applies only to certain data structures (synchronous queues).

The fourth option is to design new data structures that
work well under NUMA, using one of many techniques.
The most common is to use monitors or coarse-grained
locks: a thread locks the entire data structure before ex-
ecuting an operation. This technique does not scale be-
cause it inhibits concurrent access to the data structure. An
alternative to coarse-grained locking is to lock finer sec-
tions of code, but this is complex and can cause subtle
bugs and unexpected races [37]. Software and hardware
transactional memory [36, 58] have emerged as alterna-
tives to locks. However, it is unlikely that software trans-
actional memory can outperform carefully crafted concur-
rent data structures written by experts [63], and prior work
has shown that hardware transactional memory also suffers
from NUMA performance pathologies [14]. Another alterna-
tive to locks is Read-Copy-Update (RCU [49]) or Read-Log-
Update (RLU [48]); with these methods, NUMA-awareness
must be provided manually; moreover, RCU is notably hard
to use in general; RLU is easier but still requires an expert to
decide what to rlu lock and when, similarly to fine-grained
locking. Another technique is to develop lock- and wait-free
data structures, which rely on algorithmic design to dispense
with locks and transactions. Unfortunately, designing new

concurrent data structures is hard and prone to subtle concur-
rency bugs [60]. Moreover, lock- and wait-free algorithms
are rigid: it is hard to extend them to support operations
for which they were not originally designed. Another ap-
proach is to use asynchronized concurrency patterns [22] for
search data structures. But designing the algorithm remains
a complex data-structure-dependent task. Another approach
is to modify the cache coherence protocol to deal with con-
tention [28], but this requires hardware changes.

The fifth option is to synthesize code mechanically. Xiang
and Scott [63] propose a compiler tool that takes lock-based
code with user annotations to generate concurrent data struc-
tures. Hawkins et al. [29] synthesize the data structures and
locking code from concurrent relations. These approaches
require programmer assistance or programming paradigms
not based on concurrent data structures.

NR is most similar to the third approach above, but targets
NUMA systems.

Similar goal, different mechanism. Much prior work has
proposed replication of data as a way to optimize perfor-
mance in shared-memory. These works differ from ours in
the context and in the generality of replication. None of these
works propose methods of replication that can transform se-
quential data structures into concurrent ones in a black-box
manner. That is, the key innovation of our paper is not the
idea of using replication, but rather how to do it in a general
way for data structures. At the OS level, there is much work
on NUMA memory management that replicates pages for per-
formance (e.g., [10, 15, 19, 20, 62]). Because of the high
copying costs, replication is intended for data that changes
rarely, not concurrent data structures. Memprof [41] men-
tions replication as an optimization for NUMA systems, but
only covers replication of read-only objects (e.g., a read-
only matrix is replicated on creation). Munin [8] is a DSM
system that uses replication in the cache coherence mech-
anism; there, replication is done by message-passing algo-
rithms. Similarly, Barrelfish [7] uses message-passing algo-
rithms to maintain the consistency of replicas of kernel data
structures; an enhanced message-passing algorithm was sub-
sequently proposed in [23]. Shahmirzadi et al. [56] analyze
the tradeoffs between replication and partitioning in design-
ing a high-performance map in a message passing system.
Tornado [27] and K42 [40] can replicate clustered objects,
but the replication is left to the specific implementation of
each object. Corey [11] allows applications to control which
data structures are shared across cores.

Different goal, similar mechanism. Our method is based
on in-memory logs. Prior work has used in-memory logs,
but for goals different from ours. Herlihy and Calciu [34]
implement a replicated transactional memory by using a
shared transactional log to synchronize the replicas. In pre-
dictive log synchronization [57], threads log updates to a
common log, and the system keeps exactly two replicas, so
that threads can read a consistent replica while the other is

being updated with the updates in the log. OpLog [12] keeps
multiple independent logs, one per core, to optimize update-
heavy workloads. Updates are deferred by recording them in
the local logs. When a read occurs, the system applies up-
dates in all logs.

4. Overview
Assumptions and API. To work with an arbitrary data
structure, our approach expects a sequential implementation
of the data structure as a class with three generic methods:

Create()→ Ptr
Execute(ptr,op,args)→ Result
IsReadOnly(ptr,op)→ Boolean

The Create method creates an instance of the data struc-
ture, returning its pointer. The Execute method takes a data
structure pointer, an operation, and its arguments; it executes
the operation on the data structure, returning the result. The
method must produce side effects only on the data structure
and it must not block. Operation results must be determin-
istic; we allow nondeterminism if it does not affect the re-
sults (e.g., levels of nodes in a skip list); for randomization
that affects the results, one can use a pseudo-random number
generator with a known seed. The IsReadOnly method indi-
cates if an operation is read-only; we use this information
for read-only optimizations in NR. Our technique provides a
new method ExecuteConcurrent that can be called concur-
rently from different threads.

Basic idea. NR replicates the data structure on each node,
and uses different techniques to coordinate threads within
and across nodes. At the highest level, NR leverages the fact
that coordination within a node is cheaper than across nodes.

Within each node, NR uses flat combining (a technique
from concurrent computing [30]) to batch updates from
threads in the same node. Flat combining works by elect-
ing a leader for the node, called a combiner, which handles
outstanding update operations from threads within the node.
Leadership is short-lived: the leader abdicates when it fin-
ishes executing the outstanding updates, up to a maximum
number. Batching can gather many operations even though
threads have at most one outstanding operation each, be-
cause there are many threads per node (e.g., 28 in our ma-
chine). Batching helps because it localizes synchronization
within a node.

Across nodes, threads coordinate through a shared log (a
technique from distributed systems [6, 43, 55]). The com-
biner of each node reserves entries in the log, writes the out-
standing update operations to the log, brings the local replica
up-to-date by replaying the log if necessary, and executes the
local outstanding update operations.

For efficiency, NR handles read operations differently, by
reading directly from the local replica. To satisfy lineariz-
ability, a thread executing a read must replay the log on the
local replica at least until the last operation that completed

before the read started. It can skip later operations in the log,
because they are concurrent.

An optional optimization is to use a dedicated combiner
for each node, which can replay the log even before local
threads execute their operation.

NR brings multiple efficiency benefits:

• Limited cross-node synchronization and contention: NR
executes a lock-free append to the log, using an uncon-
tended compare-and-swap (CAS) on the log tail to re-
serve entries. Only the combiners execute the CAS, so the
cross-node synchronization is limited to one thread per
node, which is a small number (typically 2–8). In addi-
tion, the cost of a CAS is amortized over many operations
due to batching.

• Parallel reads and writes to the log: Combiners update
local replicas and write many operations to the log in
parallel (after reserving entries for them).

• Local parallel reads: Read operations run in parallel and
locally, if the replica is fresh. Checking for freshness
might fetch a cache line across nodes, but this fetch
populates the local cache and benefits many local readers.
Readers execute in parallel with combiners on different
nodes, and with the local combiner when it is filling
entries in the log.

• Compact representation of shared data: Operations often
have a shorter description than the effects they produce,
and thus communicating the operation via the log incurs
less communication across cores than sharing the modi-
fications to the data structure.

A complication is that the log entries need to be recycled,
but only after all the replicas have been updated using those
entries. NR uses a lightweight lazy mechanism for recycling
the entries that avoids synchronization by delegating respon-
sibility to one of the threads.

5. The NR algorithm
NR replicates the data structure across nodes using a log real-
ized as a shared circular buffer. This buffer can be allocated
from the memory of one of the NUMA nodes, or it could
be spread across nodes; our current implementation does the
former. The log is accessed by at most one thread per node
(§5.1), and it provides coordination and consistency across
nodes. Within a node, threads coordinate to access the log
and update the local replicas (§5.2). A node may have dozens
of threads, but they can leverage a shared last level cache for
fast coordination.

5.1 Inter-node coordination: circular buffer
The log is a circular buffer that stores update operations on
the data structure. It has a variable logTail containing the
index of the next available entry. For now, assume the buffer
is unbounded; we discuss the wrap-around in Section 5.6.

Thread'1'

Local&
Replica&

Local&Tail&

Thread'2'

Local&
Replica&

Local&Tail&

Shared&Log&

LogTail&

Figure 2. NR algorithm, shared log. logTail indicates the
first unreserved entry in the log. Each localTail indicates
the next operation in the log to be executed on each local
replica. Threads 1 and 2 are the combiners for nodes 1 and
2. Thread 1’s replica executed 5 operations from the log.
Thread 2’s replica executed 3 more operations and found a
reserved entry that is not yet filled. A combiner must wait
for all empty entries preceding its batch in the log. Readers
can return when they find an empty entry (§5.3).

Each node has a replica of the data structure and a vari-
able localTail indicating how far in the log the replica has
been updated. A node elects a temporary leader thread called
a combiner to write to the buffer (§5.2).

The combiner writes many operations (a batch) to the log
at a time. To do so, it first allocates space by using a CAS to
advance logTail by the batch size. Then, it writes the buffer
entries with the operations and arguments. Next, it updates
the local replica by replaying the entries from localTail to
right before the entries it allocated. In doing so the combiner
may find empty entries allocated by other threads; in that
case, it waits until the entry is filled (identified by a bit in the
entry). Figure 2 shows two combiners accessing the log to
update their local replicas, which they do in parallel.

5.2 Intra-node coordination: combining
Within a node, threads use flat combining [30] to coor-
dinate. Roughly, flat combining elects a temporary leader,
called combiner, to execute outstanding operations of other
threads. NR applies flat combining once at each node, where
each combiner executes the operations of its node. The com-
biners coordinate to write the log (§5.1).

More precisely, to execute an operation, a thread posts
its operation in a reserved slot1 and tries to become the
combiner by acquiring the combiner lock. The combiner
reads the slots of the threads in the node, marks filled slots by
setting a reserved bit in the slot, and remembers the number
of slots filled (the batch size B). The combiner then proceeds
as explained in §5.1 to write the B operations to the log,
from startEntry to endEntry in Algorithm 1, and update the

1 We call slots the locations where threads post operations for the combin-
ers; we call entries the locations in the shared log.

NUMA%node%1%

Local&
Replica&

Local&Tail&

NUMA%node%2%

Local&
Replica&

Local&Tail&

Sh
ar
ed

&L
og
&

Thread&1& Thread&2&
Thread&1& Thread&2&

Figure 3. NR algorithm, per-node replicas. Threads located
on the same node share a replica and coordinate access to
the replica using a combiner lock.

local replica up to startEntry. Next, the combiner executes
the operations in the slots it marked before, conveying the
results to each thread that submitted an operation. Note that
the combiner does not use the newly written entries in the
log to update its replica with its own batch. Instead, it uses
the combining slots, which are local to the node.

While original flat combining could opportunistically ex-
ecute new operations outside the current batch, NR cannot
do that because it has multiple combiners. To avoid small
inefficient batches, the combiner in NR waits if the batch
size is smaller than a parameter MIN BATCH. Rather than
idle waiting, the combiner refreshes the local replica from
the log, though it might need to refresh again after finally
adding the batch to the log. Per-node replicas are shown in
Figure 3.

5.3 Read-only operations
Threads performing read-only operations (readers) do not
reserve space in the log, because their operations do not af-
fect the other replicas. Moreover, a reader that is updating
from the log can return and proceed with the read if it en-
counters an empty entry. Unlike flat combining, NR opti-
mizes read-only operations by executing them directly on the
local replica using a readers-writer lock for each node. The
combiner acquires the lock in write mode when it wishes
to modify the local replica, while reader threads acquire the
lock in read mode. To avoid stale reads that violate lineariz-
ability, a reader must ensure the local replica is fresh. How-
ever, the replica need not reflect all operations up to log-
Tail, only to the last operation that had completed before the
reader started. To do this, we keep a completedTail variable,
which is an index ≤ logTail that points to a log entry after
which there are no completed operations. After a combiner
refreshes its local replica, it updates completedTail using a
CAS to its last batch entry if it is smaller. A reader reads com-
pletedTail when it starts, storing it in a local variable read-
Tail. If the reader sees that a combiner exists, it just waits
until localTail≥ readTail; otherwise, the reader acquires the

Algorithm 1 NR Algorithm
1: SHARED: sharedLog, logTail, completedTail
2: LOCAL (PER NODE): replica, localTail, combinerLock, rwLock
3: LOCAL (PER CORE): slot, response
4: function UPDATEFROMLOG(to)
5: for index: localTail→ to do
6: while sharedLog[index] = ⊥ do
7: Wait()
8: replica.Execute(sharedLog[index])
9: function RESERVELOGENTRIES(N)

10: val← logTail
11: Repeat CAS(logTail→ val + N) until SUCCESS
12: return val
13: function APPENDTOLOG(N, batch)
14: k← 0; start← ReserveLogEntries(N)
15: for index: start→ start + N do
16: sharedLog[index]← (batch[k].slot.args, batch[k++].slot.op)
17: return start
18: function COMBINE(op, args)
19: self().response←⊥; self().slot← (args, op)
20: while TRUE do
21: if combinerLock.TryLock() then
22: // combiner
23: for all threads t on node with t.slot.op 6= ⊥ do
24: batch.Add(t)
25: startEntry← AppendToLog(size(batch), batch)
26: rwLock.Acquire-Writer()
27: UpdateFromLog(startEntry)

28: endEntry← startEntry + size(batch)
29: localTail← endEntry
30: Repeat CAS(completedTail→ endEntry) until
31: (SUCCESS or (endEntry < completedTail))
32: for t in batch do
33: t.response← replica.Execute(t.slot.op, t.slot.args)
34: rwLock.Release-Writer(); combinerLock.Release()
35: return self().response
36: else
37: // not combiner
38: while self().response=⊥ and combinerLock do
39: Wait()
40: if self().response 6= ⊥ then
41: return self().response
42: function READONLY(args)
43: readTail← sharedLog.completedTail
44: while localTail < readTail do
45: // reader might acquire writer lock and update
46: WaitOrUpdate(readTail)
47: rwLock.Acquire-Reader()
48: response← replica.ReadOnly(args)
49: rwLock.Release-Reader()
50: return response
51: function EXECUTECONCURRENT(op, args)
52: if replica.IsReadOnly(op) then return ReadOnly(op, args)
53: return Combine(op, args)

readers-writer lock in writer mode and refreshes the replica
itself.

5.4 Readers-combiner parallelism
NR’s algorithm is designed for readers to execute in paral-
lel with combiners in the same node. In early versions of
the algorithm, the combiner lock also protected the local
replica against readers, but this prevented the desired par-
allelism. By separating the combiner lock and the readers-
writer lock (§5.3), readers can access the replica while a
combiner is reading the slots or writing the log, before it re-
freshes the replica. Furthermore, to enable parallelism, read-
ers must wait for completedTail as described, not logTail be-
cause otherwise readers block on the hole created by the lo-
cal combiner, despite the readers lock being available. The
pseudo-code for NR is shown in Algorithm 1.

5.5 Better readers-writer lock
The distributed readers-writer lock of [2] uses a per-reader
lock to reduce reader overhead; the writer must acquire the
locks from all readers. We modify this algorithm to reduce
writer overhead as well, by adding an additional writer lock.
To enter the critical section, the writer must acquire the
writer lock and wait for all the readers locks to be released,
without acquiring them; to exit, it releases its lock. A reader
waits if the writer lock is taken, then acquires its local lock,
and checks the writer lock again; if this lock is taken, the
reader releases its local lock and restarts; otherwise, it enters
the critical section; to exit, it releases the local lock. With

this scheme, the writer and readers incur just one atomic
write each on distinct cache lines to enter the critical sec-
tion. Readers may starve if writers keep coming, but this is
unlikely with NR, as often only one thread wishes to be a
writer at a time (the combiner) and that thread has signif-
icant work outside the critical section. We omit a proof of
correctness for brevity.

5.6 Recycling log entries
Each log entry has a bit that alternates when the log wraps
around to indicate empty entries. An index logMin stores
the last known safe location to write; for efficiency, this
index is updated only when a thread reaches a low mark
in the log, which is max batch entries before logMin. The
thread that reserves the low mark entry updates logMin to
the smallest localTail of all nodes; meanwhile, other threads
wait for logMin to change. This scheme is efficient: it incurs
no synchronization and reads localTail rarely if the log is
large. A drawback is that a slow thread becomes a bottleneck
if it does not update its localTail. This problem is avoided
using a larger log size.

5.7 Architecture-specific optimizations
NR has many low-level optimizations specific to each archi-
tecture and related to the details of the cache coherency pro-
tocol. These optimizations are restricted to NR’s implemen-
tation, and are not required for the sequential data structure
implementation, relieving the programmer from the burden
of platform-aware optimizations.

Replicas and node-local data are allocated from the
node’s local memory; data is padded and cache aligned
to avoid false sharing. Threads often communicate with-
out atomic instructions but with carefully placed barriers. To
atomically write an operation and its arguments in a com-
biner slot, the combiner uses no locks; rather, it writes in a
certain order—argument before operation—so that an oper-
ation is never without its arguments. The combiner needs to
write a bit to the slot (§5.2), but again no lock is needed, as
the combiner writes the bit as part of the operation. The slot
is padded to fill the cache line and the operation comes after
the arguments to match the order in which a thread writes the
slot. The thread waits for the response on a different cache
line. A similar interaction occurs when the combiner writes
the response.

Across nodes, a combiner uses stores to write to the log;
again, the store order and data placement are important. The
cadence of the algorithm ensures that log cache lines do not
often ping pong across nodes as a combiner typically writes
a full cache line before others attempt to read it.

6. Practical considerations
We now discuss some important considerations of how to
apply our algorithms to practice. Where appropriate, we
describe our experience with Redis.

Threads and cores. The basic NR algorithm assumes that
software threads correspond to hardware cores. However,
we can adapt NR to allow more threads than cores, as fol-
lows (not implemented). Each thread has a combiner slot, or
threads share slots using CAS to insert requests. When cores
wait for the local combiner, rather than spinning they can
run threads to generate larger combiner batches to increase
efficiency.

Log length. NR uses a circular array for its log; if the array
gets full, threads pause until older entries are consumed. This
is undesirable, so one should use a large log, but how large?
A solution is to dynamically resize the log if it gets full.
This can be done by writing a special log entry that indicates
that the log has grown so that all replicas agree on the new
size after consuming the special entry. This does not prevent
the initial blocking that occurs when the log gets full, but it
gradually adjusts the log size until it is sufficiently large.

Memory allocation. As memory allocation can become a
bottleneck, we need an efficient allocator that (1) avoids
too much coordination across threads [3], and (2) allocates
memory local to each node. We use a simple allocator in
which threads get buffers from local pools [4]. The allocator
incurs coordination only if a buffer is allocated in one thread
and freed in another; this requires returning the buffer to the
allocating thread’s pool. This is done in batches to reduce
coordination.

Inactive replica. If a replica is inactive (threads in the node
execute no operation), it will stop replaying entries from the

log, causing the log to fill up. This problem can be solved
by periodically refreshing each replica using a dedicated
combiner per node (§4). But many applications do not face
this issue, as work is spread over threads (e.g., using a thread
pool as we did in our multi-threaded version of Redis).

Coupled data structures. In many applications, data struc-
tures are read or updated together. For example, Redis im-
plements sorted sets using a hash table and a skip list, which
are updated atomically by each request. NR can provide these
atomic updates, by treating the data structures as a single
larger data structure with combined operations. (Lock- and
wait-free algorithms cannot fundamentally support that.)

Fake update operations. Some update operations become
read-only during execution (e.g., remove of a non-existent
key). Black-box methods must know about read-only opera-
tions at invocation time. If updates become read-only often,
one can first attempt to execute them as read-only and, if not
possible, then execute them as updates (e.g., remove(key)
first tries to look up the key). This requires a simple wrapper
around remove(). We did not implement this.

7. Implementation
We implemented NR in C++ for Linux and Windows, with
fewer than 1500 lines of code. We found that in practice
fixing the size of the log to 1M entries works well, so we
did not implement dynamic resizing of the log. We also did
not use the dedicated combiner optimization (§4).

Redis. We implemented a multi-threaded version of the
Windows port of Redis, using different methods for the con-
current data structures. We added to Redis a thread pool
and work queuing, support for per-key locking, and syn-
chronization mechanisms to ensure correct concurrent oper-
ation between worker threads and Redis’s event-processing
thread. Redis can resize its in-memory hash table, which
can cause a read-only operation to update data; we dis-
abled this for read-only operations but kept it for update op-
erations. Redis keeps several global counters for statistics
(memory consumption, number of operations per type, etc).
They impaired multi-threaded performance, so we replaced
them with thread-local counters. Altogether, these changes
amounted to 1400 lines of code, most of which for making
Redis multi-threaded2; it took only 20 lines of code to con-
vert each Redis data structure to a concurrent one using NR.

8. Evaluation
We wish to answer five broad questions: How does NR scale
with the number of cores for different data structures and
workloads? How does NR compare with other concurrent
data structures? What is the benefit of NR to real applica-

2 Note that our black-box approach produces concurrent data structures
from sequential ones, not entire multi-threaded applications from single-
threaded ones (§2).

Baseline Description
SL One big lock (spinlock)
RWL One big readers-writer lock
FC Flat combining
FC+ Flat combining with readers-writer lock
LF Lock-free algorithm
NA NUMA-aware algorithm

Figure 4. Other methods for comparison (baselines).

tions? How does NR behave on different NUMA architec-
tures? What are the benefits of NR’s techniques? What are
the costs of NR? To answer these questions, we perform five
classes of experiments:

• Real data structures (§8.1). We run micro-benchmarks on
real data structures: a pairing-heap priority queue [26], a
skip list priority queue, a skip list dictionary, and a stack.

• Synthetic data structure (§8.2). We run micro-benchmarks
on a synthetic data structure (a simple buffer) with a con-
tended workload, to study the effects of data structure
characteristics (data size, operation size, etc).

• Real application (§8.3). We run macro-benchmarks on
the data structures of a real application: the Redis storage
server modified to use many threads.

• Another NUMA architecture (§8.4). We run the same Re-
dis macro-benchmarks on another NUMA architecture to
see if there are qualitative differences.

• Benefits of techniques (§8.5). We disable individual ideas
in NR (§5) and measure the impact.

We compare NR against the other methods (baselines)
shown in Figure 4. SL and RWL are methods often used
in practice. For RWL we use the same readers-writer lock
as NR §5.5. FC can be used as a black-box method3, while
FC+ improves on this method using a readers-writer lock
to execute read-only operations efficiently. LF and NA are
available only for some of the real data structures; for the
synthetic structure, no lock-free or NUMA-aware algorithms
exist, and in the real application (Redis), threads must atom-
ically update multiple data structures but lock-free and ex-
isting NUMA-aware algorithms do not support that. LF re-
quires a mechanism to garbage collect memory, such as haz-
ard pointers [35, 51] or epoch reclamation [25]; these mech-
anisms can reduce performance by 5x [13]. We do not use
these mechanisms, so the reported numbers for LF are opti-
mistic.

In all experiments, we pin threads to cores. We first use
all threads within a node4, including hyperthreads; as we add
more threads, we use threads of more nodes.

Summary of results. On the real data structures (§8.1), we
find that NR outperforms other methods at many threads un-

3 FC can also use data-structure-specific optimizations to combine
operations—a non-black-box optimization that we enable for FC.
4 We tried different pinning policies, but they were inferior for all methods.

der high operation contention, with the exception of NUMA-
aware algorithms tailored to the data structure. The other
methods, including lock-free algorithms, tend to lose signif-
icant performance beyond a NUMA node. On the synthetic
data structure (§8.2), we see that these results hold even as
we vary the amount of data accessed per operation and data
structure size. Under low operation contention, LF outper-
forms NR significantly, revealing a limitation of NR. Also,
NR consumes more memory than other methods. On a real
application’s data structures (§8.3), NR outperforms alterna-
tives by 2.6x–14x on workloads with 10% updates, or by
1.1x–4.4x on 100% updates. Finally, the techniques in NR
contribute significantly to its success (§8.5).

Testbed. We use a Dell server with 512 GB RAM and 56
cores on four Intel Xeon E7-4850v3 processors at 2.2 GHz.
Each processor is a NUMA node with 14 cores, a 35 MB
shared L3 cache, and a private L2/L1 cache of size 256
KB/64 KB per core. Each core has 2 hyperthreads for a total
of 112 hyperthreads. Cache lines have 64 bytes. We also run
an experiment with another NUMA architecture, from AMD,
which we detail in the relevant section.

8.1 Real data structures
These experiments use four real data structures: a skip list
priority queue, a pairing heap priority queue, a skip list dic-
tionary, and a stack. A priority queue provides two update
operations and one read-only operation: insert(i) inserts el-
ement i, deleteMin() removes and returns the smallest ele-
ment, and findMin() returns the smallest element without re-
moving it. Priority queues can be based on different mech-
anisms; we consider two of them: a skip list and a pairing
heap. A dictionary provides operations to insert, lookup, and
remove elements, and we use a skip list to provide the dictio-
nary. A stack provides operations to push and pop elements.
NR, FC and FC+ use the same black-box sequential pairing
heap [26], and skip list [54]. For the skip list priority queue
and for the stack, FC is not black-box: we use the FC imple-
mentation from [30], which batches multiple operations.

For the lock-free baseline (LF), we use the skip-list-based
priority queue and skip list dictionary from [37], and the
stack from [61]; there are no lock-free implementations for
pairing heaps, so we omit LF in that case. For the NUMA-
aware baseline (NA), only the stack has a NUMA-aware
implementation [17], so we omit NA for the others. The table
below summarizes the LF and NA baselines we use:

Data structure LF NA
Skip list priority queue [37] —
Pairing heap priority queue — —
Skip list dictionary [37] —
Stack [61] [17]

We use the benchmark from the flat combining pa-
per [30], which runs a mix of generic add, remove, and read
operations. We map these operations to each data structure
as shown below (pq stands for priority queue and dict for
dictionary):

generic skip list pq pairing heap pq skip list dict stack
add insert(rnd,v) insert(rnd,v) insert(rnd,v) push(v)
remove deleteMin() deleteMin() delete(rnd) pop()
read findMin() findMin() lookup(rnd) —

where rnd indicates a key chosen at random and v is an
arbitrary value. The stack does not have a read operation.
The add and remove operations are the update operations,
and we use the same ratio of add and remove to keep the
data structure size nearly constant over time. For data struc-
tures other than the stack, we consider three ratios of update-
to-read operations: 0%,10%,100% updates (100%,90%,0%
reads). For the stack, all operations are updates. Between
operations the benchmark optionally does work by writing
e random locations external to the data structure. This work
causes cache pollution and reduces the arrival rate of opera-
tions. We first populate the data structure with 200 000 items,
and then measure the performance of the methods for vari-
ous workload mixes. In each experiment, we fix a method, a
ratio of update-to-read operations, an external work amount
e, and a number of threads.

8.1.1 Skip list priority queue
Figure 5 shows the results. (a) For 0% updates, LF, FC+,
RWL, and NR scale well, where LF dominates others by
≈2.9x at max threads. LF incurs no locking overheads; FC+,
RWL, and NR use readers locks, which are uncontended but
require a barrier—a high overhead since the findMin read
operation is short. NR is ≈9% lower than FC+ and RWL
because of NR’s overheads of checking the log—which are
small but significant relative to findMin’s cost. FC and SL do
not scale because their reads execute serially.

(b) For 10% updates, all methods drop in performance at
the NUMA node boundaries due to the cross-node overheads;
but NR drops little, making it the best after 1 NUMA node.
At max threads, NR is better than LF, FC+, FC, RWL, SL
by 1.7x, 6x, 7x, 27x, 41x. Checking the CPU performance
counters, NR had the fewest L3 cache misses and L3 cache
misses served from remote caches, indicative of lower cross-
node traffic.

(c) For 100% updates, LF loses its advantage due to
higher operation contention: even within a NUMA node, NR
is close to LF. After one node, NR is best as before. At max
threads, NR is better than LF, FC+, FC, SL, RWL by 2.4x,
2.5x, 3.3x, 8x, 9.4x. In some methods, one thread outper-
forms many threads, but not when there is work outside the
data structure, as is common in a real application, shown in
(d). Moreover, we need more threads to scale the applica-
tion and we want the shared data structure to not become a
bottleneck.

(e) We see that NR remains the best method even as we
vary the amount of external work e and cache pollution. With
e=512, NR is better than FC+, LF, FC, SL, RWL by 1.7x,
1.8x, 2.8x, 12.6x, 16.9x.

(f) The cost of NR is that it consumes more memory,
namely, 148 MB of memory at 112 threads (4.4x the other

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

 0 10 20 30 40 50 60 70 80 90 100 110

o
p

s
/u

s

threads

RWL and FC+ coincide

SL and FC coincide

LF
RWL
FC+

NR
FC
SL

(a) 0% update rate, e=0

0

10

20

30

40

50

60

 0 10 20 30 40 50 60 70 80 90 100 110

o
p

s
/u

s

threads

NR
LF

FC+

FC
RWL

SL

(b) 10% update rate, e=0

0

2

4

6

8

10

12

 0 10 20 30 40 50 60 70 80 90 100 110

o
p

s
/u

s

threads

NR
LF

FC+

FC
RWL

SL

(c) 100% update rate, e=0

0

1

2

3

4

5

6

7

 0 10 20 30 40 50 60 70 80 90 100 110

o
p

s
/u

s

threads

NR
FC+

LF

FC
RWL

SL

(d) 100% update rate, e=512

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

 1 2 4 8 16 32 64 128 256 512

o
p

s
/u

s

work

NR
FC+

LF
FC

RWL
SL

(e) 100% update rate, max threads

(f)
NR others

memory at max threads (MB) 148 34

Figure 5. Skip list priority queue made concurrent using
different methods. Vertical lines show the boundaries be-
tween NUMA nodes.

methods): 12 MB for the log and 34 MB for each of the
four replicas. Technically, NR has another cost: it executes
an operation many times, one per replica. However, this cost
is relatively small as NR makes up for it with better overall
performance.

0

10

20

30

40

50

60

 0 10 20 30 40 50 60 70 80 90 100 110

o
p

s
/u

s

threads

NR
FC+

FC

RWL
SL

(a) 10% update rate

0

2

4

6

8

10

12

14

16

 0 10 20 30 40 50 60 70 80 90 100 110

o
p

s
/u

s

threads

NR
FC

FC+

RWL
SL

(b) 100% update rate

(c)
NR others

memory at max threads (MB) 44 8

Figure 6. Performance of pairing heap priority queue. (0%
update rate is omitted since it is nearly identical to Figure 5).

8.1.2 Pairing heap priority queue
Figure 6 shows the results. We show only e=0 due to space
limitations, but the results are similar to the ones for the
skip list priority queue (§8.1.1). NR, FC, and FC+ perform
slightly better than in the skip list priority queue because
the sequential data structure is more efficient, while RWL
and SL remain bottlenecked by the lock. As before, NR
outperforms significantly once threads grow beyond the first
node, and the cost is additional memory consumption.

8.1.3 Skip list dictionary
To vary the operation contention, we pick keys using two
distributions: uniform (low contention) and zipf with param-
eter 1.5 (high contention).

The results are shown in Figure 7. As before, for 0%
updates, NR, LF, FC+, and RWL scale well, while other
methods do not (not shown). When there are updates, per-
formance depends on the level of contention. With low con-
tention (uniform keys), LF outperforms other methods (it is
off the charts): at maximum threads, it is 7x and 14x bet-
ter than NR for 10% and 100% updates, respectively. This
is due to the parallelism of the skip list unhindered by con-
tention. Excluding LF, NR outperforms the other methods
(with 100% updates, it does so after threads grow beyond a
node).

However, with high contention (zipf keys), LF loses
its benefit, becoming the worst method for 100% updates.
There is a high probability of collisions in the vicinity of the
hot keys and the skip list starts to suffer from many failed
CASs: with uniform keys, the skip list has ≈300K failed
CASs, but with the zipf keys this number increases to >7M.

0

2

4

6

8

10

 0 10 20 30 40 50 60 70 80 90 100 110

o
p

s
/u

s

threads

LF
NR

FC+
RWL

FC
SL

(a) uniform keys, 10% update rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 0 10 20 30 40 50 60 70 80 90 100 110

o
p

s
/u

s

threads

LF
NR

FC+
FC

SL
RWL

(b) uniform keys, 100% update rate

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

 0 10 20 30 40 50 60 70 80 90 100 110

o
p

s
/u

s

threads

NR
LF

FC+

FC
RWL

SL

(c) zipf keys, 10% update rate

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

 0 10 20 30 40 50 60 70 80 90 100 110

o
p

s
/u

s

threads

NR
FC+

FC

SL
RWL

LF

(d) zipf keys, 100% update rate

(e)
NR others

memory at max threads (MB) 148 34

Figure 7. Performance of skip list dictionary.

NR is the best method after 8 threads. Contention in the
data structure does not disrupt the NR log. On the contrary,
data structure contention improves cache locality with NR.
With maximum threads and 10% updates, NR is better than
LF, FC+, FC, RWL, SL by 3.1x, 4.0x, 6.8x, 16x, 30x. With
100% updates, NR is better by 2.8x, 1.8x, 2.4x, 5.7x, 4.3x.

8.1.4 Stack
Figure 8 shows the results. NA and NR scale well, while
the other methods do not. At max threads, NR is better than
FC, FC+, LF, SL, RWL by 2.3x, 3.0x, 6.2x, 21x, 24x. Note
that LF performs poorly; this is consistent with the results
in Sections 8.1.1 and 8.1.3, since a stack has significant
operation contention.

0

10

20

30

40

50

 0 10 20 30 40 50 60 70 80 90 100 110

o
p

s
/u

s

threads

NA
NR
FC

FC+

LF
SL

RWL

Figure 8. Performance of stack.

NA outperforms NR at 14 threads or more, getting up
to 3.6x better at max threads (off the chart). NA achieves
that using a stack-specific technique: within a NUMA-node,
it uses elimination [32] to match up concurrent pushes and
pops, so that they execute without global synchronization.
This shows that NUMA-optimizations tailored to the data
structure can be effective, and that black-box methods can
be limited by their generality.

8.2 Synthetic data structures
For these experiments, we use a synthetic data structure with
parameters that we vary to represent different types of data
structure and workload: how large is the data structure (n
cache lines), how much data is manipulated per operation
(c cache lines) and what fraction of operations are updates
(fraction u of operations). More precisely, the synthetic data
structure is a buffer with n entries, where each entry takes
one cache line. We place a spare cache line between entries
to avoid performance artifacts from data prefetching. Each
operation accesses c entries by either reading them (read op-
eration) or by reading and writing them (update operation).
To produce contention, one of the n entries is accessed by
every operation; this is intended to model the tail pointers of
stacks, roots of trees, head nodes of skip lists, etc. The other
entries are accessed uniformly at random. Each thread runs
in a closed loop where it continually issues an update or read
operations randomly according to the fraction u.

8.2.1 Scalability
We study the performance of each method as we increase
the number of threads. In each experiment, we fix a method,
an update rate, and a number of threads, and we measure
the aggregate throughput across all threads. We consider
three update rates: u= 0,10%,100%. We pick n= 200K and
c = 8; we later study the effect of these parameters.

Figure 9 shows the results. With 0% updates, FC+, RWL,
and NR scale well, with NR lower than FC+ and RWL by
10% and 6%, while FC and SL do not scale due to lock
contention (the graph is omitted as it is similar to the 0%
update graph in Figure 5 without the LF line).

When the system has operation contention (10% and
100% updates), NR stands out. The other methods lose per-
formance at node boundaries, because they are not designed
for NUMA. With u=10%, NR has a bigger advantage because

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100 110

o
p

s
/u

s

threads

NR
FC+

FC

SL
RWL

(a) 10% update rate

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100 110

o
p

s
/u

s

threads

NR
FC+

FC

SL
RWL

(b) 100% update rate

Figure 9. Scalability results for synthetic data structure.

the read-only operations benefit from local replicas signifi-
cantly. With u=100%, all methods are subject to high oper-
ation contention but NR more effectively deals with NUMA
issues. We also see that FC+ and FC are better than SL and
RWL because the batching in flat combining reduces the
synchronization overheads. Moreover, our implementation
of flat combining performs operations in the order of NUMA
nodes, further decreasing NUMA cache traffic.

8.2.2 Effect of data accessed per operation
We study the effect of the amount of data accessed by an op-
eration (parameter c). In each experiment, we fix a method,
an update rate, and parameter c; we measure the aggregate
throughput when the system runs the maximum number of
threads. We set n = 200K and consider two update rates:
u = 10%,100%.

Figure 10 shows the results. We see NR is always better
than the other methods, but this advantage decreases as we
increase c. This is because of two effects: (1) as we increase
c, the operation overhead grows while the synchronization
overhead remains the same, thereby decreasing the advan-
tage of any faster method, and (2) NR replicates the opera-
tion 4 times, and so a larger c increases the work of NR more
than the work of other methods.

8.2.3 Effect of data structure size
We measure performance for various data structure sizes
as we vary n. We experiment with extreme settings for c
(1 and 64), vary the mix of operations (10% and 100%
update), and set the number of threads to the maximum. In
each experiment, we fix these parameters and measure the
aggregate throughput.

We find that data structure size does not affect perfor-
mance much when the data fits in the L3 cache (we omit

 1

 2

 4

 8

 16

 32

 64

 128

 1 2 4 8 16 32 64

N
R

 i
m

p
ro

v
e

m
e

n
t

cache lines accessed per operation (c)

SL
RWL

FC
FC+

(a) 10% update rate

 1

 2

 4

 8

 16

 32

 64

 1 2 4 8 16 32 64

N
R

 i
m

p
ro

v
e

m
e

n
t

cache lines accessed per operation (c)

RWL
SL

FC+
FC

(b) 100% update rate

Figure 10. Effect of number of cache lines per operation
on the benefit provided by NR using 112 threads. The y-axis
indicate the speed-up of NR over each of the other methods.

the graph due to space limitations). For instance, with 100%
updates, for any method, the throughput difference between
n=2K and n=20K is at most 8%. Once outside L3, NR, FC,
and FC+ drop by ≈50%, and NR remains the best method.

8.3 Real application
We now consider the data structures of the Redis server,
made concurrent using various black-box methods, includ-
ing NR.

We evaluate Redis’s sorted sets, which sort items based
on a score. In Redis, sorted sets use a hash table (for fast
lookup) and a skip list (for fast rank/range queries). For read
operations, we use the ZRANK command, which returns the
rank of an item in the sorted order. ZRANK finds the item
in the hash table; if present, it finds its rank in the skip list.
For update operations we use ZINCRBY, which increases the
score of an item by a chosen value. ZINCRBY finds the item
in the hash table; if present, it updates its score, and deletes
and reinserts it into the skip list. The hash table and skip list
are updated atomically with each request.

We used the redis-benchmark utility provided in the dis-
tribution to generate client load. We modified the benchmark
to support hybrid read/write workloads using the update-
read mix of the YCSB benchmark [18] (0%, 10%, 50% up-
dates) in addition to 100% updates.

To overcome the significant overheads of the Redis RPC
and approximate a high-performance RPC [46, 47], we in-
voke Redis’s operations directly at the server after the RPC
layer, instead of generating requests from remote clients.

In each experiment, we create a single sorted set with
10,000 items. We launch multiple threads that repeatedly
read or update a uniformly distributed random item using

0

1

2

3

4

5

6

 0 10 20 30 40 50 60 70 80 90 100 110

o
p

s
/u

s

threads

NR
FC+

RWL

FC
SL

(a) 10% update rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 0 10 20 30 40 50 60 70 80 90 100 110

o
p

s
/u

s

threads

NR
FC

FC+
RWL

SL

(b) 50% update rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 0 10 20 30 40 50 60 70 80 90 100 110

o
p

s
/u

s

threads

NR
FC+

FC

RWL
SL

(c) 100% update rate

Figure 11. Redis performance.

ZRANK or ZINCRBY, respectively. In each experiment, we
fix an update ratio, a method, and a number of cores, and we
measure the aggregate throughput.

Figure 11 shows the results. For 0% updates, RWL, NR
and FC+ scale well and have almost identical performance,
while FC and SL do not scale (the graph is omitted as it is
similar to the previous 0% update graphs). For 10%, 50%,
100% updates, we see that all methods except NR drop
after threads grow beyond a single node, making NR the
best method for maximum threads. For 10% updates, NR
is better than FC+, RWL, FC, SL by 2.6x, 3.9x, 4.9x, 14x,
respectively. For 100% updates, NR is better by 1.1x, 3.7x,
1.1x, 4.4x, respectively.

While its scalability is not perfect, NR is the best method
here. As discussed, the goal is to reduce data structure bottle-
necks so that adding cores benefits the rest of the application.

8.4 Another NUMA architecture
We now study the behavior of NR on another NUMA architec-
ture based on AMD processors, to see how it differs from the
results on Intel. We use a server with 120 GB RAM and 48
cores on eight AMD Magny-Cours processors at 1.9 GHz.
Each processor has 6 cores, a 10 MB shared L3 cache, and a
private L2/L1 cache size of 512 KB/64 KB per core.

0

1

2

3

4

 0 10 20 30 40

o
p

s
/u

s

threads

NR
FC+

RWL

FC
SL

(a) 10% update rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 0 10 20 30 40

o
p

s
/u

s

threads

NR
FC

FC+

RWL
SL

(b) 50% update rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 0 10 20 30 40

o
p

s
/u

s

threads

NR
FC+

FC

RWL
SL

(c) 100% update rate

Figure 12. Redis experiment on another processor (AMD).

We run the same Redis macro-benchmark as in Sec-
tion 8.3, but use the AMD machine instead.

Figure 12 shows the results. They are qualitatively simi-
lar to those of Section 8.3, with lower absolute numbers, as
the AMD machine is older. We also see less of an impact
on FC and FC+ as we cross node boundaries; as a result,
these methods are competitive with NR with 50% and 100%
updates. This happens because the AMD machine uses an
incomplete cache directory, which can cause communica-
tion across nodes even when data is shared only within a
node [21], decreasing the benefit of the NUMA design of NR.

8.5 Benefits of techniques
We study the benefit of the techniques in NR’s algorithm, by
individually disabling them and observing the impact on dif-
ferent workloads. We use the real data structures benchmark
(§8.1) with maximum threads and measure the drop in NR
throughput when a technique is disabled. We consider five
techniques as shown in Figure 13.

Figure 14 shows the throughput loss of NR as we disable
each technique. The results are for the skip list priority
queue, but the other structures are qualitatively similar.
We can see that updating the replicas in parallel significantly
helps performance across nodes (#4). Within a node, flat
combining (#1) and the optimized readers-writer lock (#5)
have noticeable impact. In some cases, the techniques come

Technique How it was disabled
#1. flat combining §5.2 use the readers-writer lock for all synch

within node; all threads write to the log
#2. read optimization §5.3,§5.4 readers wait until logTail instead of

completedTail
#3. separate replica lock §5.4 combiner lock protects replica
#4. parallel replicas update §5.1 combiners wait on completedTail be-

fore getting writer lock5

#5. better readers-writer lock §5.5 use standard readers-writer lock

Figure 13. Techniques disabled to understand their benefit.

Workload #1 #2 #3 #4 #5
10% update 69.8% 34.8% 41.6% 63.7 85.9%
100% update 65.8% 0% -1.9% 68.9% -0.9%

Figure 14. Performance loss after disabling each technique.

at a cost to update operations (#3 and #5), but the cost is
small and bring considerable benefit for read operations.

9. Conclusion
We proposed, implemented, and evaluated a general method
to transform sequential data structures into NUMA-aware
concurrent data structures. Lock-free data structures are con-
sidered state-of-the-art, but they were designed for UMA.
Creating new lock-free algorithms for NUMA is a herculean
effort, as each data structure requires highly specialized new
techniques. NR required such techniques, but once imple-
mented it can be used to implement all concurrent data struc-
tures without additional effort. We found that NR performs
well for data structures of small and medium sizes, on work-
loads with operation contention, which are traditionally hard
to tackle. Intuitively, NR handles this contention using a hi-
erarchical approach, where most threads synchronize locally
within a node, and a few threads synchronize globally across
nodes. NR’s general approach is to first optimize a shared log
for the architecture at hand (NUMA), and then use the log to
replicate. We believe this approach could be applicable to
future new architectures as well.

Acknowledgements. We are grateful to the anonymous re-
viewers for the feedback that helped improve the paper.

References
[1] http://redis.io.

[2] Dmitry Vyukov. Distributed Reader-Writer Mutex.
http://www.1024cores.net/home/lock-free-algorithms/
reader-writer-problem/distributed-reader-writer-mutex.

[3] http://goog-perftools.sourceforge.net/doc/tcmalloc.html.

[4] M. K. Aguilera. Thread-local malloc. https://github.com/
mkaguilera/tmalloc.

5 In more detail, combiners spin until completedTail reaches their batch in
the log. This causes the replicas to be updated in series, because completed-
Tail is advanced only after the combiner finishes updating its replica.

[5] J. H. Anderson and M. Moir. Universal constructions for
large objects. IEEE Transactions on Parallel and Distributed
Systems, 10(12):1317–1332, Dec. 1999.

[6] M. Balakrishnan, D. Malkhi, J. P. Davis, V. Prabhakaran,
M. Wei, and T. Wobber. CORFU: A distributed shared log.
ACM Transactions on Computer Systems, 31(4), Dec. 2013.

[7] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The
multikernel: A new OS architecture for scalable multicore sys-
tems. In ACM Symposium on Operating Systems Principles,
pages 29–44, Oct. 2009.

[8] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin:
distributed shared memory based on type-specific memory
coherence. In ACM Symposium on Principles and Practice
of Parallel Programming, pages 168–176, Mar. 1990.

[9] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova. A
case for NUMA-aware contention management on multicore
systems. In USENIX Annual Technical Conference, Oct. 2011.

[10] W. J. Bolosky, R. P. Fitzgerald, and M. L. Scott. Simple
but effective techniques for NUMA memory management. In
ACM Symposium on Operating Systems Principles, pages 19–
31, Dec. 1989.

[11] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang,
and Z. Zhang. Corey: an operating system for many cores.
In Symposium on Operating Systems Design and Implementa-
tion, pages 43–57, Dec. 2008.

[12] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zel-
dovich. OpLog: a library for scaling update-heavy data struc-
tures. Technical Report TR-2014-019, MIT CSAIL, Sept.
2014.

[13] A. Braginsky, A. Kogan, and E. Petrank. Drop the an-
chor: Lightweight memory management for non-blocking
data structures. In ACM Symposium on Parallelism in Algo-
rithms and Architectures, pages 33–42, July 2013.

[14] T. Brown, A. Kogan, Y. Lev, and V. Luchangco. Investigating
the performance of hardware transactions on a multi-socket
machine. In ACM Symposium on Parallelism in Algorithms
and Architectures, pages 121–132, July 2016.

[15] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum. Disco:
running commodity operating systems on scalable multipro-
cessors. ACM Transactions on Computer Systems, 15(4):412–
447, Nov. 1997.

[16] I. Calciu, D. Dice, T. Harris, M. Herlihy, A. Kogan, V. J.
Marathe, and M. Moir. Message passing or shared memory:
Evaluating the delegation abstraction for multicores. In In-
ternational Conference on Principles of Distributed Systems,
pages 83–97, Dec. 2013.

[17] I. Calciu, J. E. Gottschlich, and M. Herlihy. Using delega-
tion and elimination to implement a scalable NUMA-friendly
stack. In USENIX Workshop on Hot Topics in Parallelism,
June 2013.

[18] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with YCSB.
In ACM Symposium on Cloud Computing, pages 143–154,
June 2010.

[19] A. L. Cox and R. J. Fowler. The implementation of a coherent
memory abstraction on a NUMA multiprocessor: Experiences
with PLATINUM. In ACM Symposium on Operating Systems
Principles, pages 32–44, Dec. 1989.

[20] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize,
B. Lepers, V. Quema, and M. Roth. Traffic management:
A holistic approach to memory placement on NUMA sys-
tems. In International Conference on Architectural Support
for Programming Languages and Operating Systems, pages
381–394, Mar. 2013.

[21] T. David, R. Guerraoui, and V. Trigonakis. Everything you
always wanted to know about synchronization but were afraid
to ask. In ACM Symposium on Operating Systems Principles,
pages 33–48, Nov. 2013.

[22] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized
concurrency: The secret to scaling concurrent search data
structures. In International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
pages 631–644, Mar. 2015.

[23] T. David, R. Guerraoui, and M. Yabandeh. Consensus in-
side. In International Middleware Conference, pages 145–
156, Dec. 2014.

[24] P. Fatourou and N. D. Kallimanis. A highly-efficient wait-free
universal construction. In ACM Symposium on Parallelism in
Algorithms and Architectures, pages 325–334, June 2011.

[25] K. Fraser. Practical lock-freedom. Technical Report UCAM-
CL-TR-579, University of Cambridge, Computer Laboratory,
Feb. 2004.

[26] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan.
The pairing heap: a new form of self-adjusting heap. Algorith-
mica, 1(1):111–129, Jan. 1986.

[27] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tornado:
Maximizing locality and concurrency in a shared memory
multiprocessor operating system. In Symposium on Operat-
ing Systems Design and Implementation, pages 87–100, Feb.
1999.

[28] S. K. Haider, W. Hasenplaugh, and D. Alistarh. Lease/release:
Architectural support for scaling contended data structures.
In ACM Symposium on Principles and Practice of Parallel
Programming, Mar. 2016. Article 17.

[29] P. Hawkins, A. Aiken, K. Fisher, M. Rinard, and M. Sagiv.
Concurrent data representation synthesis. In ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, pages 417–428, June 2012.

[30] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining
and the synchronization-parallelism tradeoff. In ACM Sympo-
sium on Parallelism in Algorithms and Architectures, pages
355–364, June 2010.

[31] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Scalable flat-
combining based synchronous queues. In ACM Symposium on
Parallelism in Algorithms and Architectures, pages 355–364,
Sept. 2010.

[32] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free
stack algorithm. J. Parallel Distrib. Comput., 70(1):1–12, Jan.
2010.

[33] M. Herlihy. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems, 11(1):124–149, Jan.
1991.

[34] M. Herlihy and I. Calciu. Work in progress: Shared nothing
transactional memory. In Workshop on Systems for Future
Multicore Architectures, Apr. 2011.

[35] M. Herlihy, V. Luchangco, P. Martin, and M. Moir. Non-
blocking memory management support for dynamic-sized
data structures. ACM Trans. Comput. Syst., 23(2):146–196,
May 2005.

[36] M. Herlihy and J. E. B. Moss. Transactional memory: Archi-
tectural support for lock-free data structures. ACM SIGARCH
Computer Architecture News, 21(2):289–300, May 1993.

[37] M. Herlihy and N. Shavit. The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2008.

[38] M. P. Herlihy and J. M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM Transactions on
Programming Languages and Systems, 12(3):463–492, July
1990.

[39] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA
efficiently for key-value services. In ACM SIGCOMM Confer-
ence on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communications, pages 295–306, Aug.
2014.

[40] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wisniewski,
J. Xenidis, D. D. Silva, M. Ostrowski, J. Appavoo, M. Butrico,
M. Mergen, A. Waterland, and V. Uhlig. K42: building a com-
plete operating system. In European Conference on Computer
Systems, pages 133–145, Apr. 2006.

[41] R. Lachaize, B. Lepers, and V. Quéma. MemProf: A memory
profiler for NUMA multicore systems. In USENIX Annual
Technical Conference, pages 53–64, June 2012.

[42] C. Lameter. NUMA (non-uniform memory access): An
overview. ACM Queue, 11(7), July 2013.

[43] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133–169, May 1998.

[44] V. Leis, P. Boncz, A. Kemper, and T. Neumann. Morsel-driven
parallelism: A NUMA-aware query evaluation framework for
the many-core age. In International Conference on Manage-
ment of Data, pages 743–754, June 2014.

[45] Y. Li, I. Pandis, R. Mueller, V. Raman, and G. Lohman.
NUMA-aware algorithms: the case of data shuffling. In Con-
ference on Innovative Data Systems Research, Jan. 2013.

[46] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA:
A holistic approach to fast in-memory key-value storage. In
Symposium on Networked Systems Design and Implementa-
tion, pages 429–444, Apr. 2014.

[47] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for
fast multicore key-value storage. In European Conference on
Computer Systems, pages 183–196, Apr. 2012.

[48] A. Matveev, N. Shavit, P. Felber, and P. Marlier. Read-log-
update: a lightweight synchronization mechanism for concur-
rent programming. In ACM Symposium on Operating Systems
Principles, pages 168–183, Oct. 2015.

[49] P. E. McKenney and J. D. Slingwine. Read-copy-update:
Using execution history to solve concurrency problems. In
Parallel and Distributed Computing and Systems, pages 509–
518, Oct. 1998.

[50] Z. Metreveli, N. Zeldovich, and M. F. Kaashoek. CPHash: a
cache-partitioned hash table. In ACM Symposium on Princi-
ples and Practice of Parallel Programming, pages 319–320,
Feb. 2012.

[51] M. M. Michael. Hazard pointers: Safe memory reclamation
for lock-free objects. IEEE Transactions on Parallel and
Distributed Systems, 15(6):491–504, June 2004.

[52] D. Ongaro, S. M. Rumble, R. Stutsman, J. K. Ousterhout, and
M. Rosenblum. Fast crash recovery in RAMCloud. In ACM
Symposium on Operating Systems Principles, pages 29–41,
Oct. 2011.

[53] D. Porobic, E. Liarou, P. Tözün, and A. Ailamaki. ATraPos:
Adaptive transaction processing on hardware islands. In In-
ternational Conference on Data Engineering, pages 688–699,
Mar. 2014.

[54] W. Pugh. Skip lists: A probabilistic alternative to balanced
trees. Communications of the ACM, 33(6):668–676, June
1990.

[55] F. Schneider. Implementing fault-tolerant services using the
state machine approach: A tutorial. ACM Computing Surveys,
22(4):299–319, Dec. 1990.

[56] O. Shahmirzadi, T. Ropars, and A. Schiper. High-throughput
maps on message-passing manycore architectures: Partition-
ing versus replication. In International Conference on Paral-
lel Processing, pages 536–547, Aug. 2014.

[57] O. Shalev and N. Shavit. Predictive log-synchronization. In
European Conference on Computer Systems, pages 305–316,
Apr. 2006.

[58] N. Shavit and D. Touitou. Software transactional memory.
In ACM Symposium on Principles of Distributed Computing,
pages 204–213, Aug. 1995.

[59] P. Stuedi, A. Trivedi, B. Metzler, and J. Pfefferle. DaRPC:
Data center RPC. In ACM Symposium on Cloud Computing,
pages 1–13, Nov. 2014.

[60] H. Sutter. Lock-free code: A false sense of security. Dr.
Dobb’s, Sept. 2008.

[61] R. K. Treiber. Systems programming: Coping with paral-
lelism. Technical report, IBM Almaden Research Center, Apr.
1986.

[62] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. Op-
erating system support for improving data locality on CC-
NUMA compute servers. In International Conference on Ar-
chitectural Support for Programming Languages and Operat-
ing Systems, pages 279–289, Oct. 1996.

[63] L. Xiang and M. L. Scott. Compiler aided manual speculation
for high performance concurrent data structures. In ACM Sym-
posium on Principles and Practice of Parallel Programming,
pages 47–56, Feb. 2013.

