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Abstract. We introduce the rank-pairing heap, a heap (priority queue) imple-
mentation that combines the asymptotic efficiency of Fibonacci heaps with much
of the simplicity of pairing heaps. Unlike all other heap implementations that
match the bounds of Fibonacci heaps, our structure needs only one cut and no
other structural changes per key decrease; the trees representing the heap can
evolve to have arbitrary structure. Our initial experiments indicate that rank-
pairing heaps perform almost as well as pairing heaps on typical input sequences
and better on worst-case sequences.

1 Introduction

A meldable heap (henceforth just a heap) is a data structure consisting of a set of items,
each with a distinct real-valued key, that supports the following operations:

– make-heap: return a new, empty heap.
– insert(x,H): insert item x, with predefined key and currently in no heap, into heap
H .

– find-min(H): return the item in heap H of minimum key.
– delete-min(h): if heap H is not empty, delete from H the item of minimum key.
– meld(H1, H2): return a heap containing all the items in disjoint heaps H1 and H2,

destroying H1 and H2.

Some applications of heaps need either or both of the following additional operations.

– decrease-key(x,∆, H): decrease the key of item x in heap H by amount ∆ > 0.
– delete(x,H): delete item x from heap H .

We break ties between equal keys using any total order of the items. We allow only
binary comparisons of keys, and we study the amortized efficiency [26] of heap oper-
ations. We assign to each configuration of the data structure a non-negative potential,
initially zero. We define the amortized time of an operation to be its actual time plus the
change in potential it causes. Then for any sequence of operations the sum of the actual
times is at most the sum of the amortized times.
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no official endorsement should be inferred.



Since a heap can be used to sort n numbers, the classical Ω(n log n) lower bound [19,
p. 183] on comparisons implies that either insertion or minimum deletion must take
Ω(log n) amortized time, where n is the number of items currently in the heap. For
simplicity in stating bounds we assume n ≥ 2. We investigate simple data structures
such that minimum deletion (or deletion of an arbitrary item if this operation is sup-
ported) takes O(log n) amortized time, and each of the other heap operations takes
O(1) amortized time. These bounds match the lower bound.

Many heap implementations have been proposed over the years. See e.g. [17]. We
mention only those directly related to our work. The binomial queue of Vuillemin [28]
supports all the heap operations in O(log n) worst-case time per operation and performs
well in practice [2]. Fredman and Tarjan [11, 12] invented the Fibonacci heap specif-
ically to support key decrease operations in O(1) time, which allows efficient imple-
mentation of Dijkstra’s shortest path algorithm [4, 12] and several other algorithms [6,
12, 13]. Fibonacci heaps support deletion of the minimum or of an arbitrary item in
O(log n) amortized time and the other heap operations in O(1) amortized time.

Several years later, Fredman et al. [10] introduced a self-adjusting heap implementa-
tion called the pairing heap that supports all the heap operations in O(log n) amortized
time. Fibonacci heaps do not perform well in practice [20, 21], but pairing heaps do [20,
21]. Fredman et al. conjectured that pairing heaps have the same amortized efficiency
as Fibonacci heaps, but despite empirical evidence supporting the conjecture [20, 25],
Fredman [9] showed that it is not true: pairing heaps and related data structures that do
not store subtree size information require Ω(log log n) amortized time per key decrease.
In contrast, the best known upper bound is O(22

√
lg lgn) [24] amortized time 5.

These results motivated work to improve Fibonacci heaps and pairing heaps. Some
of this work obtained better bounds but only by making the data structure more com-
plicated. In particular, the bounds of Fibonacci heaps can be made worst-case: run-
relaxed heaps [5] and fat heaps [16] achieve the bounds except for melding, which takes
O(log n) time worst-case, and a very complicated data structure of Brodal [1] achieves
all the bounds worst-case. Also, Fredman’s lower bound can be matched: very recently
Elmasry [8] has proposed an alternative to pairing heaps that does not store subtree size
information but takes O(log log n) amortized time for a key decrease.

Working in a different direction, several authors proposed data structures with the
same amortized efficiency as Fibonacci heaps but intended to be simpler. Peterson [23]
gave a structure based on AVL trees. Høyer [14] gave several structures, including ones
based on red-black trees, AVL trees, and a, b-trees. Høyer’s simplest structure is one he
calls a one-step heap. Kaplan and Tarjan [17] filled a lacuna in Høyer’s presentation of
this heap and gave a related structure, the thin heap. Independently of our own work but
concurrently, Elmasry [7] developed violation heaps and Chan [3] quake heaps.

In all these structures, the trees representing the heap satisfy a balance property. As
a result, a key decrease must in general do restructuring to restore balance. Our insight
is that such restructuring is unnecessary: all that is needed is a way to control the size of
trees that are combined. Our new data structure, the rank-pairing heap, does (at most)
one cut and no other restructuring per key decrease, allowing trees to evolve to have
arbitrary structure. We store a rank for each node and only combine trees whose roots

5 We denote by lg the base-two logarithm.
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Fig. 1. A half-ordered half tree and the equivalent heap-ordered tree.

have equal rank. After a key decrease, rank changes (decreases) can propagate up the
tree. Rank-pairing heaps have the same amortized efficiency as Fibonacci heaps and are,
at least in our view, the simplest such structure so far proposed. Our initial experiments
suggest that rank-pairing heaps compare well with pairing heaps in practice.

The remainder of our paper has six sections. Section 2 describes a one-pass version
of binomial queues on which we base our data structure. Section 3 extends this version
to obtain two types of rank-pairing heaps, which we analyze in Section 4. Section 5
shows that some even simpler ways of implementing key decrease have worse amor-
tized efficiency. Section 6 describes our initial experiments comparing rank-pairing
heaps with pairing heaps. Section 7 concludes and mentions some open problems.

2 One-Pass Binomial Queues

We represent a heap by a set of half-ordered half trees [10, 18] whose nodes are the
items in the heap. A half tree is a binary tree whose right subtree is missing. A half-
ordered binary tree is a binary tree in which each node has a key, such that the key of a
node is less than that of all nodes in its left subtree. Thus in a half-ordered half tree the
root has minimum key. A half-ordered half tree is just the binary tree representation [18]
of a heap-ordered tree, corresponding to the latter’s implementation. (See Figure 1.)

We represent a half tree by storing with each node x pointers to left(x) and right(x),
its left and right child, respectively. We represent a set of half trees by a singly-linked
circular list of the tree roots, with the root of minimum key first. Access to the list is via
the first root. This representation allows us to find the minimum, insert a new half tree,
or catenate two such lists in O(1) time.

The basic operation on half trees is linking, which combines two half trees into one,
in O(1) time. To link two half trees with roots x and y, compare the keys of x and y.
Assume x has smaller key; the other case is symmetric. Detach the left subtree of x and
make it the right subtree of y. Then make the tree rooted at y the left subtree of x.

To make our data structure efficient, we restrict linking by using ranks. A ranked
half tree is a half tree in which each node has an integer rank. The rank of a half tree is
the rank of its root. We only link half trees of equal rank. After a link, we increase the
rank of the new root by one. (See Figure 2.)

We implement the various heap operations as follows. To find the minimum in a
heap, return the first root. To make a heap, create an empty list of roots. To insert an
item, make it a one-node half-tree of rank zero and insert it into the list of roots, in
first or second position depending on whether it has minimum key or not. To meld two
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Fig. 2. A link of two half trees of rank k. Ranks are to the right of nodes.

heaps, catenate their lists of roots, making the root of minimum key first on the new list.
Each of these operations takes O(1) time worst-case.

To delete the minimum, take apart the half tree rooted at the node of minimum key
by deleting this node and walking down the path from its left (only) child through right
children, making each node on the path together with its left subtree into a half tree.
The set of half trees now consists of the original half trees, minus the one disassembled,
plus the new ones formed by the disassembly. Group these half trees into a maximum
number of pairs of equal rank and link the half trees in each pair. To do this, maintain a
set of buckets, one per rank. Process each half tree in turn by putting it into the bucket
for its rank if this bucket is empty; if not, link the half tree with the half tree in the
bucket, and add the root of the new half tree to the list representing the updated heap,
leaving the bucket empty. Once all the half trees have been processed, add the half trees
remaining in buckets to the list of roots, leaving all the buckets empty.

This data structure is a one-pass version of binomial queues. Linking only half trees
of equal rank guarantees that every child has rank exactly one less than that of its parent,
and every half tree is perfect: its left subtree is a perfect binary tree. Thus a half tree of
rank k contains exactly 2k nodes, and the maximum rank is at most lg n.

In the original version of binomial queues, there is never more than one tree per
rank. Maintaining this invariant requires doing links during insertions and melds and
doing additional links during minimum deletions, until no two half trees have equal
rank. The original version has a worst-case time bound of O(1) for make-heap and
O(log n) for the other operations. Since we are interested in amortized efficiency, we
prefer to avoid linking during insertions and melds and to link lazily during minimum
deletions; extra links of equal-rank half trees done during minimum deletions do not
affect our bounds.

To analyze one-pass binomial queues, we define the potential of a heap to be the
number of half trees it contains. A make-heap, find-min, or meld operation takes O(1)
time and does not change the potential. An insertion takes O(1) time and increases the
potential by one. Thus each of these operations takes O(1) amortized time. Consider
a minimum deletion. Disassembling the half tree rooted at the node of minimum key
increases the number of trees and thus the potential by at most lg n. Let h be the number
of half trees after the disassembly but before the links. The total time for the minimum
deletion is O(h + 1), including the time to pair the trees by rank. There are at least
(h − lg n − 1)/2 links, reducing the potential by at least this amount. If we scale the
running time so that it is at most h/2 + O(1), then the amortized time of the minimum
deletion is O(log n).



3 Rank-Pairing Heaps

Our main goal is to implement key decrease so that it takes O(1) amortized time. Once
key decrease is supported, one can delete an arbitrary item by decreasing its key to
−∞ and doing a minimum deletion. A parameter of both key decrease and arbitrary
deletion is the heap containing the given item. If the application does not provide this
information and melds occur, one needs a separate disjoint set data structure to maintain
the partition of items into heaps. To find an item’s heap takes ω(1) time [15].

We shall modify one-pass binomial queues to support key decrease, obtaining rank-
pairing heaps, or rp-heaps. We make two changes to the data structure. First, we need
to provide access from each node to its parent as well as to its children. We add parent
pointers, resulting in three pointers per node; this can be reduced to two pointers if we
are willing to trade time for space, as observed by Fredman et al. [10].

Second, we relax the constraint on ranks. Let p(x) and r(x) be the parent and rank
of node x, respectively. If x is a child, the rank difference of x is r(p(x))−r(x). A node
of rank difference i is an i-child; a node whose children have rank differences i and j is
an i, j-node. The latter definition does not distinguish between left and right children.
We adopt the convention that a missing child has rank -1.

We shall define two types of rank-pairing heaps. In both, every child of a root is a
1-child, and every leaf has rank zero and is thus a 1,1-node. In a type-1 rank-pairing
heap, every child is a 1,1-node or a 0, i-node for some i > 0. We call this the rank rule.
Ranks give a lower bound but not an upper bound on subtree sizes.

Lemma 1. In a type-1 rp-heap, every node of rank k has at least 2k descendants in-
cluding itself, at least 2k+1 − 1 if it is a child.

Proof. The second part of the lemma implies the first part. We prove the second part
by induction on the height of a node. A leaf has rank zero and satisfies the second part.
Consider a non-root x of rank k whose children satisfy the second part. If x is a 0, i-
node, by the induction hypothesis it has at least 2k+1−1 descendants. If x is a 1,1-node,
by the induction hypothesis it has at least 2(2k − 1) + 1 = 2k+1 − 1 descendants. ut

We implement make-heap, find-min, insert, meld, and delete-min exactly as on one-
pass binomial queues. Links preserve the rank rule: if a link makes a root into a child,
the new child is a 1-child and a 1,1-node. (See Figure 2.)

We implement key decrease as follows. (See Figure 3.) To decrease the key of item
x in rp-heap H by ∆, subtract ∆ from the key of x. If x is a root, make it first on the
root list if it now has minimum key, and stop. Otherwise, let y = right(x); detach
the subtrees rooted at x and y; reattach the subtree rooted at y in place of the original
subtree rooted at x; add x to the list of roots, making it first if it has minimum key; set
r(x) = r(left(x)) + 1. There may now be a violation of the rank rule at p(y), whose
new child, y, may have lower rank than x, the node it replaces. To restore the rank rule,
let u = p(y) and repeat the following step until it stops:

Decrease rank (type 1): If u is the root, set r(u) = r(left(u)) + 1 and stop. Otherwise,
let v and w be the children of u. Let k equal r(v) if r(v) > r(w), r(w) if r(w) > r(v),
or r(w) + 1 if r(v) = r(w). If k = r(u), stop. Otherwise, let r(u) = k and u = p(u).
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Fig. 3. Key decrease in a type-1 rp-heap.

If u breaks the rank rule, it obeys the rule after its rank decreases, but p(u) may not.
Rank decreases propagate up along a path through the tree until all nodes obey the rule.
Each successive rank decrease is by the same or a smaller amount.

Before analyzing type-1 rp-heaps, we introduce a relaxed version. In a type-2 rank-
pairing heap, every child is a 1,1-node, a 1-2-node, or a 0, i-node for some i > 1. The
implementations of the heap operations are identical to those of type-1 rp-heaps, except
for key decrease, which is the same except that the rank decrease step becomes the
following:

Decrease rank (type 2): If u is the root, set r(u) = r(left(u)) + 1 and stop. Otherwise,
let v and w be the children of u. Let k equal r(v) if r(v) > r(w) + 1, r(w) if r(w) >
r(v) + 1, or max{r(v) + 1, r(w) + 1} otherwise. If k = r(u), stop. Otherwise, let
r(u) = k and u = p(u).

We denote by Fk the kth Fibonacci number, defined by the recurrence F0 = 0,
F1 = 1, Fk = Fk−1 + Fk−2 for k > 1, and by φ = (1 +

√
5)/2 the golden ratio.

Lemma 2. In a type-2 rp-heap, every node of rank k has at least Fk+2 ≥ φk descen-
dants including itself, at least Fk+3 − 1 if it is a child.

Proof. The inequality Fk+2 ≥ φk is well-known [18, p. 18]. The second part of the
lemma implies the first part. We prove the second part by induction on the height of
a node. A leaf has rank zero and satisfies the second part of the lemma. A missing
node also satisfies the second part. Consider a non-root x of rank k whose children
satisfy the second part. If x is a 0, i-node, by the induction hypothesis it has at least
Fk+3 − 1 descendants. If x is a 1,1-node, by the induction hypothesis it has at least
2(Fk+2−1)+1 ≥ Fk+3−1 descendants. If x is a 1,2-node, by the induction hypothesis
it has at least Fk+2 − 1 + Fk+1 − 1 + 1 = Fk+3 − 1 descendants. ut

The worst-case time for a key decrease in an rp-heap of either type is Θ(n), as in
Fibonacci heaps. We can reduce this to O(1) by delaying key decreases until the next
minimum deletion and maintaining the set of nodes that might have minimum key. This
complicates the data structure, however, and may worsen its performance in practice.



4 Amortized Efficiency of Rank-Pairing Heaps

We begin by analyzing type-2 heaps, which is easier than analyzing type-1 heaps. We
define the potential of a node to be the sum of the rank differences of its children, minus
one if it is a 1,2- or 0, i-node, minus two if it is a 1,1-node. That is, its potential is zero
if it is a 1,1-node, one if it is a root, two if it is a 1,2-node, or i − 1 if it is a 0, i-node.
We define the potential of a heap to be the sum of the potentials of its nodes.

Theorem 1. The amortized time for an operation on a type-2 rp-heap is O(1) for a
make-heap, find-min, insert, meld, or decrease-key, and O(log n) for a delete-min.

Proof. A make-heap, find-min, or meld operation takes O(1) actual time and does not
change the potential; an insertion takes O(1) time and increases the potential by one.
Hence each of these operations takes O(1) amortized time. Consider a minimum dele-
tion. The disassembly increases the potential by at most the number of 1,1-nodes that
become roots. By Lemma 2 there are at most logφ n such conversions, so the disassem-
bly increases the potential by at most logφ n. Let h be the number of half trees after the
disassembly. The entire minimum deletion takes O(h+ 1) time. Scale this time to be at
most h/2+O(1). Each link after the disassembly converts a root into a 1,1-node, which
reduces the potential by one. At most logφ n + 1 half trees do not participate in a link,
so there are at least (h− logφ n− 1)/2 links. The minimum deletion thus decreases the
potential by at least h/2−O(log n), which implies that its amortized time is O(log n).

The novel part of the analysis is that of key decrease. Consider decreasing the key
of a node x. If x is a root, the key decrease takes O(1) actual time and does not change
the potential. Otherwise, let u0 = left(x), u1 = x, and u2, . . . , uk be the successive
nodes at which rank decrease steps take place, omitting the root if its rank decreases
(uj = p(uj−1) for 2 ≤ j ≤ k). For 1 ≤ j ≤ k let vj be the child of uj other than uj−1.
Let r, r′ denote ranks before and after the key decrease, respectively. The only nodes
whose potential changes as a result of the key decrease are u1, . . . , uk. At most two of
these nodes are 1,1-nodes before the key decrease; if there is a second, it must be uk,
which must become a 1,2-node. The sum of the rank differences of v1, u1, . . . , uk−1

before the key decrease telescopes to r(uk)− r(v1); the sum of the rank differences of
v1, u2, ..., uk−1 after the key decrease telescopes to r′(uk) − r′(v1) ≤ r(uk) − r(v1)
since r′(uk) ≤ r(uk) and r′(v1) = r(v1). The key decrease reduces the rank difference
of each vj , 2 ≤ j < k by at least one. It follows that the key decrease reduces the
potential by at least k − 6; the “−6” accounts for one additional root and up to two
fewer 1,1-nodes. If we scale the time of a rank decrease step so that it is at most one,
the amortized time of the key decrease is O(1). ut

To analyze type-1 rp-heaps, we assign potentials based on the children of a node.
We call a non-leaf node good if it is a root whose left child is a 1,1-node, or it and both
of its children are 1,1-nodes, or it is a 0,1-node whose 0-child is a 1,1-node; otherwise,
the node is bad. We define the potential of a leaf to be zero if it is a non-root or 3/2 if it
is a root. We define the potential of a non-leaf node to be the sum of the rank differences
of its children, plus two if it is a root, minus one if it is good, plus three if it is bad. Thus
the potential of a 0,1-node is zero if it is good or four if it is bad, of a 1,1-node is one if it
is good or five if it is bad, of a root is two if it is good or six if it is bad, and of a 0, i-node



with i > 1 is i+ 3. We define the potential of a heap to be the sum of the potentials of
its nodes. If we restrict the links during a minimum deletion to preferentially pair the
half trees produced by the disassembly, the following theorem holds:

Theorem 2. The amortized time for an operation on a type-1 rp-heap is O(1) for a
make-heap, find-min, insert, meld, or decrease-key, and O(log n) for a delete-min.

Proof. A make-heap, find-min, or meld operation takes O(1) actual time and does not
change the potential; an insertion takes O(1) time and increases the potential by 3/2.
Hence each of these operations takes O(1) amortized time.

Our analysis of minimum deletion relies on the fact that for each rank at most one of
the half trees formed by the disassembly is not linked to another such half tree. During
the disassembly, we give each new root of rank one or more a potential of four whether
it is good or bad. We give the correct potential (two if good, six if bad) to each root of
a half tree formed by a link; and, once all half trees formed by the disassembly have
been inserted into buckets, we give the correct potential to the root of each such half
tree remaining in a bucket. This correction increases the potential by two for each such
root that is bad. We charge these two units against the rank of the bad root.

Consider the effect of the disassembly on the potential. Deletion of the root reduces
the potential by at least 3/2. The only nodes whose potential can increase are the new
roots. At most one leaf can become a root, increasing the potential by 3/2. Each bad
node that becomes a root already has the four units of potential it needs as a root.
Consider a good node x that becomes a root. There are three cases. If x is a 1,1-node,
it needs three additional units of potential as a root. We charge these to r(x). If x is a
0,1-node whose right child is a 0-child, we walk down the path of right children from x
until reaching a node y that is either bad or a leaf. Each node along the path must be a
1,1-node. If y is a bad 1,1-node, it has five units of potential, four of which it needs as
a root, leaving one for x. We charge the remaining three needed by x to r(y). If y is a
leaf, it has rank zero; we charge the units needed by x (3/2 or 4) to rank zero. Node y
is reached only from one such node x. If x is a 0,1-node whose left child is a 0-child,
we charge the four units x needs as a root to r(x). In this case x is the last new root of
its rank; since x is good, its rank is not charged two units to correct the rank of a bad
root. Each rank can only be charged once for a new root. The total increase in potential
caused by the disassembly and correction of the potential is thus at most 5 lg n: each
rank up to the maximum rank minus one can be charged two units for a correction and
three for a new root, or zero for a correction and four for a new root.

Each link of two rank-0 roots reduces the potential by one. Each link of two roots of
positive rank converts a root into a 1,1-node and makes the remaining root good. After
the link, these two nodes have total potential at most seven. Before the link, they have
potential at least eight (four plus four or at least two plus six), unless they were both
good before the link, in which case the new 1,1-node is good after the link and the link
reduces the total potential of the two nodes from four to three. Thus each link reduces
the potential by one. Let h be the number of half trees after the disassembly. The entire
minimum deletion takes O(h+1) time. Scale this time to be at most h/2+O(1). At most
lg n+1 half trees do not participate in a link, so there are at least (h− lg n−1)/2 links.
The minimum deletion thus decreases the potential by at least h/2− (11/2) lg n−1/2,
which implies that its amortized time is O(log n).



The analysis of a key decrease at a node x is just like that for type-2 heaps, except
we must show that the key decrease can make only O(1) nodes bad. A good 1,1-node
cannot become bad; it can only become a good 0,1-node. A good 0,1-node cannot de-
crease in rank, so if it becomes bad it is the last node at which a rank decrease step
occurs. If x becomes a root, it can only become bad if it was previously a good 0,1-
node with a right 0-child, in which case no ranks decrease and x is the only node that
becomes bad. For the root of the old half tree containing x to become bad, its left child
must be a 1,1-node, and the old root is the only node that becomes bad. We conclude
that the key decrease can make only one node bad, increasing the potential by at most
four, and it can create a new root, increasing the potential by two. An argument like that
in the proof of Theorem 1 shows that if there are k rank decrease steps, the potential
drops by k −O(1). Thus the key decrease takes O(1) amortized time. ut

5 Can Key Decrease Be Made Simpler?

It is natural to ask whether there is an even simpler way to decrease keys while retaining
the amortized efficiency of Fibonacci heaps. We give two answers: “no” and “maybe”.
We answer “no” by describing two possible methods that fail. The first method al-
lows arbitrarily negative but bounded positive rank differences. With such a rank rule,
the rank decrease process need only examine the ancestors of the node whose key de-
creases, not their siblings. This method can take Ω(log n) amortized time per key de-
crease, however. The second, even simpler method spends only O(1) time worst-case
on each key decrease. By doing enough operations, however, one can build a half tree
of each possible rank up to a rank that is ω(log n). Then, repeatedly doing an insertion
of minimum key followed by a minimum deletion will result in each minimum deletion
taking ω(log n) time. We omit the details of these counterexamples.

One limitation of the second construction is that building the initial trees takes a
number of operations exponential in the size of the heap. Thus it is not a counterexample
to the following question: is there a fixed d such that if each key decrease performs at
most d rank decrease steps (say of type 1), then the amortized time is O(1) per insert,
meld, and key decrease, and O(logm) per deletion, where m is the total number of
insertions? A related question is whether Fibonacci heaps without cascading cuts have
these bounds. We conjecture that the answer is yes for some positive d, perhaps even
d = 1. The following counterexample shows the answer is no for d = 0; that is, if
key decrease changes the rank only of the node whose key decreases. For arbitrary k,
build a half tree of each rank from 0 through k, each consisting of a root and a path
of left children, inductively as follows. Given such half trees of ranks 0 through k − 1,
insert an item less than all those in the heap and then do k repetitions of an insertion
of minimum key followed by a minimum deletion. The result will be one half tree of
rank k consisting of the root, a path of left children descending from the root, a path P
of right children descending from the left child of the root, and a path of left children
descending from each node of P ; every child has rank difference 1. (See Figure 4.) Do a
key decrease on each node of P . Now there is a collection of half trees of rank 0 through
k except for k − 1, each a path. Repeat this process on the set of half trees up to rank
k−2, resulting in a set of half trees of ranks 0 through k with k−2 missing. Continue in
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Fig. 4. A half tree of rank k = 4 buildable in O(k3) operations if key decreases do not change
ranks. Key decreases on the right children detach the circled subtrees.

this way until only rank 0 is missing, and then do a single insertion. Now there is a half
tree of each rank, 0 through k. The total number of heap operations required to increase
the maximum rank from k − 1 to k is O(k2), so in m heap operations one can build
a set of half trees of each possible rank up to a rank that is Ω(m1/3). Each successive
cycle of an insertion followed by a minimum deletion takes Ω(m1/3) time.

6 Experiments

In our preliminary experiments, rank-pairing heaps performed almost as well as pairing
heaps on typical input sequences and faster on worst-case sequences. We compared
rp-heaps to the standard two-pass version of pairing heaps on typical sequences and
to the auxiliary two-pass version [25] on worst-case sequences; Stasko and Vitter [25]
claimed the latter outperforms other versions on the class of worst-case sequences we
used. We compared them to four versions of rp-heaps: type-1 and type-2, performing
as many links as possible during minimum deletion (“multipass”) and performing only
a single pass of links (“one-pass”). All heap implementations were written in C and
compiled with the gcc -O2 option; all tests were performed on a 2.13 Ghz Intel CPU
running Windows Vista.

For typical input sequences, we performed three sets of experiments (Table 1). Our
measure of performance is the total number of field updates performed by each heap im-
plementation. The first set of experiments consists of publicly available heap operation
sequences [27] obtained by running Dijkstra’s shortest paths algorithm [4] on graphs
that maximize heap size and the number of key decreases, respectively; the Nagamochi-
Ibaraki minimum-cut algorithm [22] on a random graph; and heapsort. The second set
consists of heap operation sequences obtained by running two-way Dijkstra between
random pairs of nodes on real road networks. The third set tests key decreases by run-
ning 2n rounds of the following operations on a binomial heap of n nodes: an insertion,
followed by lg n− 1 key decreases, followed by a minimum deletion.

The results in Table 1 show that rp-heaps performed fewer field updates than pairing
heaps on sequences with many key decreases (2,3,7,8), and more updates on sequences
with few key decreases. The multipass versions outperformed the one-pass versions
overall, with an average speedup of over 1.8% versus an average slowdown of under
5% relative to pairing heaps, respectively. The one-pass versions, while benefiting from
smaller trees (and hence fewer rank updates), experienced greater overhead in main-
taining longer lists of half trees during minimum deletions.



Test Parameters P-heap Type-2 rp-heap Type-1 rp-heap
n m m-pass 1-pass m-pass 1-pass

1. Dijkstra (max heap size) 8388609 25165824 339.40 346.38 323.05 352.59 325.07
2. Dijkstra (max key decreases) 65536 655360 5.06 5.49 4.27 5.66 4.27
3. Nagamochi-Ibaraki 32768 2684272 136.96 96.15 119.66 98.78 121.77
4. Sorting 100000 - 23.65 26.89 30.95 26.89 30.95
5. Two-way Dijkstra, E. USA 3598623 8778114 2371.04 2603.39 2878.15 2611.77 2896.85
6. Two-way Dijkstra, NYC 264346 733846 1070.66 1316.20 1430.82 1314.26 1425.03
7. Key decrease 262144 - 421.30 322.62 390.00 322.04 389.31
8. Key decrease 4096 - 4.32 3.32 3.91 3.40 3.95

Table 1. Performance of pairing heaps versus rp-heaps on typical input sequences. n is the num-
ber of vertices or items in the heap; m is the number of arcs. All results are in millions of updates.

To investigate the worst-case behavior of key decreases, we ran Fredman’s [9] ver-
sion of an experiment of Stasko and Vitter [25]. The experiment is identical to the third
set of experiments in Table 1, but uses information-theoretic heuristics in the heap op-
erations. In particular, the winner of a link is always the root of the larger tree, and the
candidates for key decreases are chosen to detach links of high efficiency, where effi-
ciency is defined as the ratio of the child and parent tree sizes prior to linking. (See [9].)
The cost of a round is the number of links performed—plus, for rp-heaps, the number
of rank updates in a key decrease and the number of unpaired half trees in a minimum
deletion—divided by lg n. The round cost for pairing heaps converges to 2.76 and 2.97
for n = 212 and n = 218, respectively, showing positive growth. The round cost for
type-2 multipass rp-heaps converges to 2.36 and 2.32, showing slightly negative growth.

7 Remarks

We have presented a new data structure, the rank-pairing heap, that combines the per-
formance guarantees of Fibonacci heaps with simplicity approaching that of pairing
heaps. Our results build on previous work by Peterson, Høyer, and Kaplan and Tarjan,
and may be the natural conclusion of this work: we have shown that simpler methods of
doing key decreases do not have the desired efficiency. In our preliminary experiments,
rp-heaps are competitive with pairing heaps on typical input sequences and better on
worst-case sequences. Type-1 rp-heaps, although simple, are not simple to analyze.

Several interesting theoretical questions remain. Is there a simpler analysis of type-1
rp-heaps? Do type-1 rp-heaps still have the efficiency of Fibonacci heaps if the restric-
tions on linking in Section 4 are removed? More interestingly, can one obtain an O(1)
amortized time bound for insert, meld, and key decrease and O(logm) for minimum
deletion (wherem is the total number of insertions) if only O(1) rank changes are made
after a key decrease? (See Section 5.)
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