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RANK-PAIRING HEAPS∗

BERNHARD HAEUPLER† , SIDDHARTHA SEN‡ , AND ROBERT E. TARJAN§

Abstract. We introduce the rank-pairing heap, an implementation of heaps that combines the
asymptotic efficiency of Fibonacci heaps with much of the simplicity of pairing heaps. Other heap
implementations that match the bounds of Fibonacci heaps do so by maintaining a balance condition
on the trees representing the heap. In contrast to these structures but like pairing heaps, our trees
can evolve to have arbitrary (unbalanced) structure. Also like pairing heaps, our structure requires
at most one cut and no other restructuring per key decrease, in the worst case: the only changes
that can cascade during a key decrease are changes in node ranks. Although our data structure is
simple, its analysis is not.
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1. Introduction. A meldable heap (henceforth just a heap) is a data structure
consisting of a set of items, each with a distinct real-valued key, that supports the
following operations:

– make-heap: return a new, empty heap.
– insert(x,H): insert item x, with predefined key, into heap H .
– find-min(H): return the item in heap H of minimum key.
– delete-min(H): if heap H is not empty, delete from H the item of minimum
key.

– meld(H1, H2): return a heap containing all the items in disjoint heaps H1

and H2, destroying H1 and H2.
Some applications of heaps need either or both of the following additional operations:

– decrease-key(x,Δ, H): decrease the key of item x in heap H by amount
Δ > 0, assuming that H is the unique heap containing x.

– delete(x,H): delete item x from heap H , assuming that H is the unique heap
containing x.

We can allow equal keys by breaking ties using any total order of the items. We
allow only binary comparisons of keys, and we study the amortized efficiency [34]
of heap operations. To obtain a bound on amortized efficiency, we assign to each
configuration of the data structure a nonnegative potential, initially zero. We define
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the amortized time of an operation to be its actual time plus the change in potential
it causes. Then, for any sequence of operations, the sum of the actual times is at most
the sum of the amortized times.

Since n numbers can be sorted by doing n insertions into an initially empty heap
followed by n delete-min operations, the classical Ω(n logn) lower bound [26, p. 183]
on the number of binary comparisons needed for sorting implies that either insertion
or minimum deletion must take Ω(log n) amortized time, where n is the number of
items currently in the heap, which for simplicity in stating bounds we assume is at
least two. We investigate simple data structures such that minimum deletion (or
deletion of an arbitrary item if this operation is supported) takes O(logn) amortized
time, and each of the other supported heap operations takes O(1) amortized time.
These bounds match the lower bound. (The logarithmic lower bound can be beaten
in a model of computation that allows more powerful operations on keys than binary
comparisons. See, e.g., [16, 20, 35, 36].)

Many heap implementations have been proposed over the years. We mention only
those directly related to our work. The binomial queue of Vuillemin [37] supports
all the heap operations in O(logn) worst-case time per operation. This structure
performs quite well in practice [4]. Fredman and Tarjan [15] invented the Fibonacci
heap specifically to support key decrease operations in O(1) time, which allows efficient
implementation of Dijkstra’s shortest path algorithm [6, 15], Edmonds’ minimum
branching algorithm [9, 17], and certain minimum spanning tree algorithms [15, 17].
Fibonacci heaps support deletion of the minimum or of an arbitrary item in O(logn)
amortized time and the other heap operations in O(1) amortized time.

Several years after the introduction of Fibonacci heaps, Fredman et al. [14] intro-
duced a related self-adjusting heap implementation, the pairing heap. Pairing heaps
support all the heap operations in O(logn) amortized time. Fibonacci heaps do not
perform well in practice, but pairing heaps do [27, 28]. Fredman et al. [14] conjec-
tured that pairing heaps have the same amortized efficiency as Fibonacci heaps, in
particular an O(1) amortized time bound for key decrease. Despite empirical evidence
supporting the conjecture [27, 31], Fredman [13] showed that it is not true: pairing
heaps and related data structures that do not store subtree size information require
Ω(log logn) amortized time per key decrease if the other operations are allowed only
O(logn) amortized time. Whether pairing heaps meet this bound is open; the best

upper bound on the amortized time per key decrease is O(22
√
lg lgn) [30]1 if the other

operations are only allowed O(logn) amortized time.
These results motivated work to improve Fibonacci heaps and pairing heaps.

Some of this work obtained better bounds, but at the cost of making the data struc-
ture more complicated. In particular, the bounds of Fibonacci heaps can be made
worst-case. Run-relaxed heaps [7] achieve the bounds except for melding, which takes
O(logn) time. Fat heaps [23] and trinomial heaps [32] are similar structures that
achieve the same bounds somewhat more simply. (Although no melding algorithm is
given in [32], it is easy to obtain one that runs in O(logn) time.) Two-tier relaxed
heaps [12] are more complicated but achieve these bounds with two improvements:
minimum deletion takes lgn+O(log log n) comparisons, thus achieving the best pos-
sible constant factor on comparisons; and melding takes O(logn′) time, where n′ is
the number of items in the smaller of the heaps to be melded. The data structures
of Brodal [2] and of Brodal and Okasaki [3] achieve the bounds of Fibonacci heaps
except for key decrease, which takes O(logn) time in the worst case. A very compli-

1We denote by lg the base-two logarithm.
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cated data structure of Brodal [2] achieves all the bounds in the worst case. Working
in another direction, Elmasry [10] proposed an alternative to pairing heaps that does
not store subtree size information but takes O(log logn) amortized time for a key
decrease, matching Fredman’s lower bound. (Fredman’s bound does not in fact apply
to Elmasry’s data structure because the structure does not satisfy certain technical
restrictions in the bound.)

Working in yet a third direction, several authors proposed data structures with
the same amortized efficiency as Fibonacci heaps but intended to be simpler. This is
our goal as well. Peterson [29] gave a structure based on AVL trees. Høyer [21] gave
several structures, including ones based on red-black trees, AVL trees, and a, b-trees.
Takaoka [33] gave a structure based on 2, 3-trees. Høyer’s simplest structure is one he
calls a one-step heap. Kaplan and Tarjan [24] filled a lacuna in Høyer’s presentation
of one-step heaps and gave a related structure, the thin heap. Independently of our
own work but concurrently, Elmasry [11] developed violation heaps and Chan [5] quake
heaps. Violation heaps are similar to our heaps in that they avoid the cascading cuts of
Fibonacci heaps, but they use a different form of cut that moves two subtrees instead
of one, and they use a somewhat complicated rank-update method. Quake heaps use
large-scale rebuilding, triggered by a subtree becoming sufficiently unbalanced.

Except for violation heaps, all of these structures have in common that the trees
representing the heap have some kind of balance property that the heap operations
must maintain. As a result, a key decrease can trigger an arbitrary amount of restruc-
turing. Our main insight is the surprising fact that no balance condition is necessary:
all that is needed is a way to control the size of the subtrees that are combined. Our
new data structure, the rank-pairing heap or rp-heap, needs at most one (standard) cut
and no other restructuring per key decrease. As in all the cited structures other than
pairing heaps, we store a rank for each node. Ranks give lower bounds (but not upper
bounds) on subtree sizes. Only trees whose roots have equal rank are combined. After
a key decrease, rank changes (decreases) can cascade up the tree. But since there is
only one cut per key decrease, appropriate sequences of key decreases can cause the
trees representing the heap to evolve to have arbitrary, even completely unbalanced
structure. Rank-pairing heaps have the same amortized efficiency as Fibonacci heaps
and are, at least in our view, the simplest such structure so far proposed. (As noted
above, violation heaps are similar to rp-heaps but use a more complicated form of
cut and a more complicated rank-update rule.) Although rp-heaps are simple, their
analysis is not.

2. Organization. The remainder of our paper consists of seven sections. We
first review the common basis of binomial queues, Fibonacci heaps, pairing heaps,
and all the related structures. Each of these structures can be viewed as a set of
single-elimination tournaments. Section 3 discusses such tournaments and ways of
representing them. Section 4 explores the design space of binomial queues. It presents
three lazy versions of binomial queues: one old, multipass; and two new, one-pass
and one-tree. Section 5 extends multipass binomial queues to support key decrease
and arbitrary deletion, giving us the rank-pairing heap. The same extension applies
to one-pass binomial queues. There are two types of rp-heaps, type 1 and type 2,
which differ only in the rule obeyed by the node ranks. Type 2 obeys a weaker
rank rule, which makes it slightly more complicated but simplifies its analysis and
yields mostly smaller constant factors. Section 6 analyzes the amortized efficiency
of both types. Section 7 presents a one-tree version of rp-heaps. The modification
that makes the data structure into a single tree applies to either type 1 or type
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Fig. 3.1. Four representations of a tournament: (a) full, (b) half-full, (c) heap-ordered, and
(d) half-ordered.

2 rp-heaps, and preserves the efficiency results of section 6. Section 8 shows that
some even simpler ways of implementing key decrease do not yield the bounds of
Fibonacci heaps. Section 9 gives our conclusions and mentions some open problems.
A preliminary version of some of this work appeared in a conference paper [19].

3. Tournaments. The basis of many of the heap implementations mentioned
in the introduction, as well as of our own, is the (single-elimination) tournament. A
tournament is either empty, or consists of a single item, the winner, or is formed from
two item-disjoint tournaments by linking them. To link two tournaments, combine
their sets of items and compare the keys of their winners. The item of smaller key is
the winner of the link and of the tournament formed by the link; the item of larger
key is the loser of the link. Building an n-item tournament takes n− 1 comparisons;
the winner of the tournament is the item of minimum key.

There are (at least) four equivalent representations of a tournament. (See Fig-
ure 3.1.) The full representation is a full binary tree with one leaf per item and one
nonleaf per link. Each nonleaf contains the winner of the corresponding link. Thus
the nodes containing a given item form a path in the tree, consisting of a leaf and the
nonleaves corresponding to the links won by the item. The tree is heap-ordered: the
item in a node has minimum key among the items in the descendants of the node.

We obtain the half-full representation from the full representation by removing
every item from all but the highest node containing it. This representation is a binary
heap-ordered tree in which the root is full, each parent has one full and one empty
child, and each item occurs in one (full) node.

Both the full and the half-full representation use 2n− 1 nodes to represent an n-
item tournament. The heap-ordered representation uses only n nodes. It is an ordered
tree in which the items are the nodes and the children of an item are those that lost
comparisons to it, most-recent comparison first. The tree is heap-ordered but not
in general binary. Many of the heap implementations mentioned in the introduction
were originally presented in the heap-ordered representation.
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Fig. 3.2. A link of two half trees with roots x and y, x having smaller key.

We obtain the half-ordered representation from the heap-ordered representation
by using the binary tree representation [25, pp. 332–346] of a tree: the left child
of an item in the half-ordered representation is its first child in the heap-ordered
representation, and the right child of an item in the half-ordered representation is its
next sibling in the heap-ordered representation. The resulting tree is a half tree: a
binary tree whose root has a missing right subtree. The half tree is half-ordered: the
key of any item is less than that of all items in its left subtree. In a half-ordered half
tree we define the ordered ancestor of a node x other than the root to be the parent
of the nearest ancestor of x that is a left child. This is exactly the parent of x in the
heap-ordered representation.

The half-ordered representation appears in the original paper on pairing heaps [14].
Peterson [29] and Dutton [8] each independently reinvented it, unfortunately swap-
ping left and right. We shall use the half-ordered representation in its original form,
which is consistent with Knuth’s description [25]. Henceforth all our trees are binary
and half-ordered. The half-ordered representation has two advantages over the heap-
ordered representation: it is closer to an actual implementation, and it unifies the
treatment of key decrease. All four representations of tournaments are fully equiva-
lent, however, and all of our results, as well as all previous ones, can be presented in
any of them, if one does an appropriate mapping of pointers.

We represent a binary tree by storing with each node x pointers to its left and
right children, left(x) and right(x), respectively. The right spine of a node in a binary
tree is the path from the node through right children to a missing node. Linking takes
the following form on half trees (see Figure 3.2): compare the keys of the roots. If x
and y are the roots of smaller and larger key, respectively, detach the old left subtree
of x and make it the right subtree of y; then make the tree rooted at y the new left
subtree of x. A link takes O(1) time.

4. Lazy binomial queues. When translated into the half-ordered representa-
tion, many of the heap implementations mentioned in the introduction, and ours, are
extensions of the following generic implementation. A heap consists of a set of half
trees whose nodes are the items in the heap, represented by a singly-linked circular
list of the tree roots. Access to the root list is by a pointer to the root of minimum
key, which we call the min-root. Do the various heap operations, excluding key de-
crease and arbitrary deletion, as follows. To find the minimum in a heap, return the
min-root. To make a heap, create an empty list of roots. To insert an item, make it
a one-node half tree, insert it into the list of roots after the min-root, and make it
the min-root if its key is smaller than that of the old min-root. To meld two heaps,
catenate their lists of roots, and make the old min-root of smaller key the min-root of
the new list. To delete the minimum, disassemble the half tree rooted at the min-root
x, as follows. Let y be the left child of x. Delete x, and cut each edge on the right
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Fig. 4.1. Tree disassembly during a minimum deletion. Each node on the right spine of the
left child of the min-root becomes the root of a new half tree.
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Fig. 4.2. A link of two half trees with roots x and y, x having smaller key. Ranks are to the
right of nodes.

spine of y. This makes each node on the right spine of y the root of a new half tree,
containing itself and its left subtree. (See Figure 4.1.) Add the new half trees to
the remaining half trees. Find the root of minimum key, and make it the min-root.
Additionally, after each heap operation, do zero or more links of half trees to reduce
their number. With this implementation, the nodes that lost links to a given node x
are exactly those on the right spine of the left child of x.

This data structure is efficient only if the links are done carefully. In pairing
heaps [14], of which there are several forms, all the links are of half trees whose roots
are adjacent in the list of roots. This method is not efficient: Fredman [13] showed that
to obtain the bounds of Fibonacci heaps it is necessary (subject to certain technical
requirements of the proof) to do many links of half trees of related sizes. Except for
pairing heaps, all previous versions of this data structure use nonnegative node ranks
as a proxy for size. The simplest way to use ranks is as follows. Let the rank of a half
tree be the rank of its root. Give a newly inserted item a rank of zero. Link two half
trees only if they are of equal rank; after the link, increase the rank of the winning
root by one; do not change the loser’s rank. (See Figure 4.2.)

If all links are done this way, every half tree ever in a heap is perfect: it consists
of a root whose left subtree is a perfect binary tree, each child has rank one less than
that of its parent, and the tree contains 2k nodes, where k is its rank. Thus the
maximum rank is at most lg n. The resulting data structure is the binomial queue,
so-called because in the heap-ordered representation the number of nodes of depth d
in a tree of rank r is the binomial coefficient

(
r
d

)
. (See Figure 4.3.)

In the original version of binomial queues [37], links are done eagerly to maintain
the invariant that a heap contains at most one root per rank. This gives an O(logn)
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Fig. 4.3. The (a) half-ordered and (b) heap-ordered representations of a tree in a binomial
queue. Ranks are to the right of nodes.

worst-case time bound for insert, meld, and delete-min. Doing links lazily, specifically
only during minimum deletions, gives better amortized efficiency. One method, used
in Fibonacci heaps and all the other similar structures, is to do as many links as
possible after a minimum deletion, leaving at most one root per rank. This method,
which we call multipass linking, works for us as well. A lazier alternative, which we
call one-pass linking, also works: after a minimum deletion, form a maximum number
of pairs of half trees of equal rank, and link these pairs but no others. This linking
method resembles the one used in the lazy variant of pairing heaps [14]. We call
a binomial queue with multipass linking a multipass binomial queue and one with
one-pass liking a one-pass binomial queue.

To implement one-pass or multipass linking, maintain a set of buckets, one per
rank. During a minimum deletion, process the half trees, beginning with those formed
by the disassembly and finishing with the remaining ones. To process a half tree, add
it to the bucket for its rank if this bucket is empty. If not, link the half tree with the
half tree in the bucket, leaving the bucket empty; add the new half tree to the list of
trees in the new heap if linking is one-pass, or to the bucket of one higher rank if the
linking is multipass. (See Figure 4.4.) Throughout the processing, keep track of the
nonempty buckets. Once all the half trees have been processed, add any half tree still
in a bucket to the list of trees in the new heap, leaving all the buckets empty.

Although this implementation of linking seems to require an array, it is easy to
implement it in a pointer model, as observed by Fredman and Tarjan [15]: Construct a
doubly-linked list of rank nodes, one for each possible rank, from zero to the maximum
rank. For each i, rank node i points to rank nodes i+ 1 and i− 1, and to the bucket
for rank i. Each node points to the rank node for its rank.

To analyze one-pass and multipass binomial queues, we define the potential of a
heap to be twice the number of half trees.

Theorem 4.1. The amortized time for an operation on a one-pass or multipass
binomial queue is O(1) for a make-heap, find-min, insert, or meld, and O(logn) for
a delete-min.

Proof. A make-heap, find-min, insert, or meld takes O(1) actual time. Of these
operations, only an insert increases the potential, by two. Thus each of these op-
erations takes O(1) amortized time. Consider a minimum deletion. The following
argument applies to both one-pass and multipass linking. Disassembling the half tree
rooted at the node of minimum key increases the number of half trees by at most lgn
and hence the potential by at most 2 lgn. Let h be the number of half trees after
the disassembly. The entire minimum deletion takes h key comparisons and O(h+1)
time. Scale this time to be at most h+O(1). (This is equivalent to multiplying the
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Fig. 4.4. Linking during a minimum deletion using a set of buckets, one per rank. The new
half trees from the disassembly are processed first, followed by the remaining half trees. After a link,
the resulting half tree is added to the output list of the new heap if linking is one-pass, or to the
bucket of one higher rank if linking is multipass.

potential by a constant factor.) Each link after the disassembly reduces the potential
by two. At most lgn + 1 half trees do not participate in a link, so there are at least
(h− lgn− 1)/2 links. The minimum deletion thus increases the potential by at most
lg n − h + 1, giving an amortized time of O(logn) and at most 3 lgn amortized key
comparisons.

We have included one-pass linking here to illustrate the range of efficient binomial
queue implementations. One-pass linking is lazier but produces longer root lists than
multipass linking. This slows down minimum deletion. We can make this observation
quantitative: with a potential function equal to the number of half trees, an argument
such as that in the proof of Theorem 4.1 shows that multipass linking does at most
2 lgn amortized key comparisons per minimum deletion, fewer than one-pass linking
by a factor of 3/2.

A method that may be better than both one-pass and multipass linking is to
maintain the heap as a single half tree, avoiding the overhead of root lists entirely.
Such a representation encodes all key comparisons in the data structure, whereas in a
multitree representation the key comparisons done to maintain the min-root are not
encoded in the structure, and their outcomes are lost after each minimum deletion.
We conclude this section by presenting a one-tree version of binomial queues.

Maintaining the heap as a single half tree requires linking half trees of different
ranks. We call such a link unfair; we call a link of two half trees of equal rank fair.
After an unfair link, leave the rank of both the winner and the loser unchanged.
Unfair links do not adversely affect the amortized efficiency of the data structure, if
one does as few of them as possible.

A one-tree binomial queue consists of a single half tree. To find the minimum,
return the root. To make a heap, create an empty half tree. To insert a new item,
make it into a one-node half tree of rank zero and link it with the existing half
tree. To meld two heaps, link their half trees. To delete the minimum, delete the
root and disassemble the half tree into one half tree rooted at each node on the
right spine of the old left child of the deleted root. Process the new half trees by
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doing multipass linking. Once all half trees are in buckets, remove them from the
buckets and link them in any order (by fair or unfair links) until only one half tree
remains.

Lemma 4.2. A one-tree binomial queue of rank k contains at least 2k nodes.
Hence k ≤ lg n.

Proof. We prove the lemma by induction on the number of links and half-tree
disassemblies. A new one-node half tree has rank zero and satisfies the lemma. A fair
link combines two half trees of equal rank, say k, into one half tree of rank k+1. By
the induction hypothesis each component half tree contains at least 2k nodes, so the
combined half tree contains at least 2k+1 nodes and satisfies the lemma. An unfair
link combines two half trees of different ranks, say j and k with j < k, into one
half tree of rank at most k. By the induction hypothesis, the component half tree of
rank k contains at least 2k nodes, so the combined half tree satisfies the lemma. A
half-tree disassembly undoes all the links won by the root and deletes the root. Since
the resulting half trees satisfied the lemma when they were created, they satisfy the
lemma after the disassembly.

To analyze one-tree binomial queues, we define the potential of a node to be zero
if it is the loser of a fair link or one otherwise (it is a root or the loser of an unfair
link); we define the potential of a heap to be the sum of the potentials of its nodes.
A minimum deletion undoes all the links won by the node deleted. The loser of each
such link becomes a root and is no longer a loser; thus its potential increases by one
if the link was fair and does not change if the link was unfair.

Theorem 4.3. The amortized time for an operation on a one-tree binomial queue
is O(1) for a make-heap, find-min, insert, or meld, and O(logn) for a delete-min.

Proof. The analysis of find-min, make-heap, insert, and meld is just like that of
multipass binomial queues except that each insert or meld does a link. Each such link
takes O(1) time and does not increase the potential. Consider a minimum deletion.
Disassembling the half tree undoes all the links won by the root. This increases the
potential by one for each fair link won by the root. Each such link increased the rank
of the root when it took place. By Lemma 4.2 there were at most lgn such links, so
the disassembly increases the potential by at most lg n. Let h be the number of half
trees after the disassembly. The entire minimum deletion takes h−1 key comparisons
and O(h + 1) time. Scale this time to be at most h+O(1). Each fair link after the
disassembly reduces the potential by one; each unfair link does not change it. There
are at most lg n unfair links, so there are at least h − lg n − 1 fair ones. Hence the
minimum deletion increases the potential by at most 2 lgn−h+1, giving an amortized
time of O(logn) and at most 2 lgn amortized key comparisons.

5. Rank-pairing heaps. Our main goal is to implement key decrease so that it
takes O(1) amortized time. Once key decrease is supported, one can delete an arbi-
trary item by decreasing its key to −∞ and doing a minimum deletion. A parameter
of both key decrease and arbitrary deletion is the heap containing the given item. If
the application does not provide this information and melds occur, one needs a sep-
arate disjoint set data structure to maintain the partition of items into heaps. With
such a data structure, the time to find the heap containing a given item is small but
not O(1) [22].

We shall extend multipass binomial queues to support key decrease. This exten-
sion also works for one-pass binomial queues. We call the resulting data structure the
rank-pairing heap. We develop two types of rp-heaps: type 1, which is simpler but
harder to analyze and has larger constant factors in the time bounds, and type 2, a
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Fig. 5.1. Restructuring during a key decrease.

relaxed version that is easier to analyze and has smaller constant factors in the time
bounds.

In order to implement key decrease, we add parent pointers to the half trees, so
that there are three pointers per node instead of two. As observed by Fredman et
al. [14], two pointers per node suffice: each node points to its left child, or to its right
child if it has no left child, and to its right sibling, or to its parent if it has no right
sibling. This alternative representation trades time for space. If a node has only one
child, we view it as the left child if it has larger key or as the right child if not; this
avoids the need for an extra bit to disambiguate these possibilities. This can convert
right children into left children, but it affects neither the correctness nor the analysis
of the data structure. The same idea applies to pairing heaps [14].

Once the data structure supports parental access, we can decrease the key of item
x in heap H as follows. (See Figure 5.1.) Reduce the key of x. If x is not a root, then
x may now violate half order. To restore half order, create a new half tree rooted at
x by detaching the subtrees rooted at x and at y = right(x), reattaching the subtree
rooted at y in place of the original subtree rooted at x, and adding x to the list of
roots. We call this a cut at x. Whether or not x was originally a root, make it the
min-root if its key is now minimum.

Remark. If x is not originally a root, there is no way in our representation to
test in O(1) time whether decreasing the key of x has violated half order: such a test
requires access to the ordered ancestor of x. Thus we make x a root whether or not
a violation occurs.

This implementation is correct, but it destroys the efficiency of the data structure,
as we show in section 8: there are arbitrarily long sequences of operations that take
Ω(n) time per operation. The trouble is that a key decrease can remove an arbitrary
half tree, and a sequence of such removals can produce a half tree whose rank is
ω(logn). To preserve efficiency, we need a way to guarantee that the ranks remain
O(logn), one that takes only O(1) amortized time per key decrease.

In Fibonacci heaps, the solution is to do a sequence of cuts after each key decrease,
but only O(1) amortized per decrease. These cuts occur along a path of ancestors in
the heap-ordered representation. Since the parent of a node x in the heap-ordered
representation is its ordered ancestor in the half-ordered representation, implementa-
tion of this method requires an additional set of pointers, to ordered ancestors, which
is one reason Fibonacci heaps do not perform well in practice.

There are many other ways to accomplish the same objective: adapt a known
balanced tree structure, such as AVL trees [1] or red-black trees [18]; devise a new
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balance rule, as in Høyer’s one-step heaps [21] (thick heaps [24]), or thin heaps [24]; or
do more-global rebuilding, as in quake heaps [5]. Another approach, used in relaxed
heaps [7], is to allow violations of half order. Then a key decrease does not require
immediate action; it just creates one more violation. To preserve efficiency, the set
of violations must be controlled in some way, which requires periodic restructuring to
reduce the set of violations.

All of these methods have one thing in common: they do extra restructuring to
maintain some balance condition. Surprisingly, no such balance condition is needed:
it suffices just to update ranks, in particular to decrease the ranks of certain ances-
tors of the node x whose key decreases. The only restructuring is the cut at x. A
sequence of key decreases can create half trees of arbitrary structure, but ranks remain
logarithmic, which preserves efficiency.

A little terminology helps the presentation. We denote by p(x) and r(x) the
parent and rank of node x, respectively. We adopt the convention that the rank of a
missing child is −1. If x is a child, its rank difference is Δr(x) = r(p(x)) − r(x). A
child of rank difference i is an i-child; a root whose left child is an i-child is an i-node;
a nonroot whose children are an i-child and a j-child is an i, j-node. These definitions
apply even if the left child of a root, or either or both children of a nonroot, are
missing. The definition of an i, j-node does not distinguish between its left and right
child. In a binomial queue other than the one-tree version, every root is a 1-node and
every nonroot is a 1,1-node. We shall relax the second half of this invariant.

Our key observation is that each node has a number of descendants at least
exponential in its rank even if we allow 0, i-nodes for arbitrary i in addition to 1,1-
nodes. With this in mind, we introduce the type-1 rank rule: every root is a 1-node
and every child is a 1,1-node or a 0, i-node for some i > 0 (possibly different for each
node). A type-1 rp-heap is a set of heap-ordered half trees whose nodes have ranks
that obey the type-1 rank rule.

Ranks give an exponential lower bound (but not an upper bound) on subtree
sizes.

Lemma 5.1. In a type-1 rp-heap, every node of rank k has at least 2k descendants
including itself, at least 2k+1 − 1 if it is a child. Hence k ≤ lg n.

Proof. The second part of the lemma implies the first and third parts. We prove
the second part by induction on the height of a node. A leaf has rank zero and satisfies
the second part. Let x be a child of rank k whose children satisfy the second part. If
x is a 0, i-node, its 0-child has 2k+1 − 1 descendants by the induction hypothesis; so
does x. If x is a 1,1-node, x has 2(2k−1)+1 = 2k+1−1 descendants by the induction
hypothesis.

The operations make-heap, find-min, insert, meld, and delete-min are exactly the
same on type-1 rp-heaps as on multipass binomial queues, except for one change in
minimum deletion: during the half-tree disassembly, give each new root a rank that
is one greater than that of its left child. Since every link is fair, each link preserves
the rank rule: the loser becomes a 1,1-node.

To decrease the key of a node x, proceed as follows (see Figure 5.2): Reduce the
key of x. If x is a root, make it the min-root if its key is now minimum. If x is not
a root, detach the subtrees rooted at x and at its right child y, reattach the subtree
rooted at y in place of the one rooted at x, and add x to the list of roots, making it
the min-root if its key is minimum. Finish by restoring the rank rule: make the rank
of x one greater than that of its left child; and, starting at the new parent of y, walk
up through ancestors, reducing their ranks to obey the rank rule, until reaching the
root or reaching a node whose rank needs no reduction. To do the rank reductions,
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Fig. 5.2. Key decrease in a type-1 rp-heap. Numbers on edges are rank differences. When x
becomes a root, its rank becomes that of its left child plus 1. Each node on the path from u to v
decreases in rank.

let u = p(y) and repeat the following step until it stops:

Type-1 rank-reduction step: If u is a root, set r(u) = r(left(u))+1 and stop. Otherwise,
let v and w be the children of u. Let k = max{r(v), r(w)} if r(v) �= r(w), k = r(v)+1
if r(v) = r(w). If k ≥ r(u), stop. Otherwise, let r(u) = k and u = p(u).

Remark. In a multipass rp-heap, k ≤ r(u) in every rank-reduction step. This is
not true in the one-tree variant of rp-heaps that we develop in section 7.

Lemma 5.2. The rank-reduction process restores the rank rule.
Proof. Since all rank differences are nonnegative, r(y) ≤ r(x) before the key

decrease. If r(y) < r(x), replacing x by y may cause p(y), but only p(y), to violate
the rank rule. If u violates the rank rule before a rank-reduction step, the step reduces
its rank to make it obey the rule. This may cause p(u), but only p(u), to violate the
rule. An induction on the number of steps gives the lemma.

Before analyzing type-1 rp-heaps, we introduce a relaxed version, obeying the
type-2 rank rule: every root is a 1-node and every child is a 1,1-node, a 1,2-node, or
a 0, i-node for some i > 1 (possibly different for each node). A type-2 rp-heap is a set
of heap-ordered half trees whose nodes have ranks that obey the type-2 rank rule.

The heap operations on type-2 rp-heaps are exactly the same as on type-1 rp-
heaps except that the rank-reduction process restores the type-2 rule by using the
following step in place of the type-1 step:

Type-2 rank-reduction step: If u is a root, set r(u) = r(left(u))+1 and stop. Otherwise,
let v and w be the children of u. Let k = max{r(v), r(w)} if |r(v) − r(w)| > 1,
k = max{r(v), r(w)} + 1 if |r(v) − r(w)| ≤ 1. If k ≥ r(u), stop. Otherwise, let
r(u) = k and u = p(u).

Lemma 5.2 holds for type-2 rank reduction by the same proof. In either type of
rank reduction, each successive rank decrease is by the same or a smaller amount,
and in a multipass rp-heap k ≤ r(u) in every rank-reduction step, although this is not
true in the variant we develop in section 7.
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The rank bound for type-2 rp-heaps is bigger by a constant factor than that for
type-1 heaps, but is the same as that for Fibonacci heaps. We denote by Fk the kth
Fibonacci number, defined by the recurrence F0 = 0, F1 = 1, Fk = Fk−1 + Fk−2 for
k > 1. We denote by φ the golden ratio, (1 +

√
5)/2.

Lemma 5.3. In a type-2 rp-heap, every node of rank k has at least Fk+2 ≥ φk

descendants including itself, at least Fk+3 − 1 if it is a child. Hence k ≤ logφ n.
Proof. The second part of the lemma implies the first and third parts, given the

known [25, p. 18] inequality Fk+2 ≥ φk. We prove the second part by induction on
the height of a node. A missing node satisfies the second part; so does a leaf. Let x
be a child of rank k whose children satisfy the second part. If x is a 0, i-node, then
the 0-child of x has at least Fk+3−1 descendants by the induction hypothesis; so does
x. If x is a 1,1- or 1,2-node, then x has at least Fk+1 − 1 + Fk+2 − 1 + 1 = Fk+3 − 1
descendants by the induction hypothesis, since Fk+1 ≤ Fk+2.

6. Amortized efficiency of rank-pairing heaps. In this section we analyze
the efficiency of rp-heaps. We begin by analyzing type-2 heaps, which is easier than
analyzing type-1 heaps. We use a potential function argument. Choosing a potential
function is more an art than a science. Our choice resulted from a process of trial
and error, refinement and simplification: even for type-2 rp-heaps, the choice is a
bit delicate. In hindsight, we can provide some intuition for our choice. Recall from
section 5 that a missing child has rank −1 by convention. The nonexistent right child
of a root is not regarded as missing. We need to amortize two kinds of O(1)-time
steps: links, each of which converts a root into a 1,1-node, and rank-reduction steps.
It is natural to try a potential function that is a sum of node potentials. If we assign
one unit of potential to each root and zero to each 1,1-node, then each link reduces
the potential by one. This pays for links. To pay for rank-reduction steps, we observe
that if the rank of a nonroot node decreases by k, the rank difference of each of its
two children decreases by k, and its own rank difference increases by k, so the sum
of these three rank differences decreases by k. Thus if we assign a potential of i + j
to each i, j-child, then each rank-reduction step reduces the potential by at least one.
This remains true if we assign a potential of i+ j+ c to each i, j-child, where c is any
constant. Choosing c = −2 gives each 1,1-node zero potential, consistent with the
assignment needed to pay for links.

Unfortunately, there is one more constraint: the half-tree disassembly triggered
by a minimum deletion can convert an arbitrarily large number of 0,2-nodes into roots,
each of which needs one unit of potential. For each such node to have the needed
potential before the disassembly, we must choose c ≥ −1, which produces a seemingly
unresolvable circularity. Fortunately, there is a way to break this circularity. As we
prove below, at most one 1,1-node can decrease in rank during each key decrease.
This allows us to reduce the potential of each 1,1-node by one, since the extra unit
needed when it changes state can be charged to the corresponding key decrease. Thus
we choose c = −1 but give each 1,1-node a potential of zero.

It remains to prove that this works. We assign a potential to every heap equal
to the sum of its node potentials. The potential of a node is the sum of the rank
differences of its children, minus one if it is a child but not a 1,1-node or minus two if
it is a 1,1-node. This definition applies not only to nodes that obey the rank rule but
also to the node that violates the rank rule in the middle of a key decrease. That is,
the potential of a root with an i-child is i, the potential of a 1,1-node is 0, and the
potential of an i, j-node other than a 1,1-node is i+ j − 1.

Theorem 6.1. The amortized time for an operation on a type-2 rp-heap is O(1)
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Fig. 6.1. Rank reductions during a key decrease in a type-2 rp-heap. Node t is the bottom-
most 1, 1-node among those whose ranks decrease. Node y can have arbitrarily large rank difference.
Nodes on the path from u to t can decrease in rank by an arbitrarily large amount, but t and any
node above t can only decrease in rank by 1. Hence the next 1, 1-node above t cannot decrease in
rank, but only become a 1, 2-node.

for a make-heap, find-min, insert, meld, or decrease-key, and O(logn) for a delete-
min.

Proof. A make-heap, find-min, or meld operation takes O(1) actual time and does
not change the potential; an insertion takes O(1) time and increases the potential by
one. Hence each of these operations takes O(1) amortized time. Consider a minimum
deletion. Each new root created by the disassembly has the potential it needs (one
unit) unless it was previously a 1,1-node. At most one 1,1-node can become a new
root for each rank less than that of the deleted root. By Lemma 5.3 there are at
most logφ n such 1,1-nodes. Thus the disassembly increases the potential by at most
logφ n. Let h be the number of half trees after the disassembly. The entire minimum
deletion takes h − 1 key comparisons and O(h + 1) time. Scale this time to be at
most h+O(1). Each link after the disassembly converts a root into a 1,1-node, which
reduces the potential by one. At most logφ n+ 1 half trees remain after all the links,
so there are at least h− logφ n−1 links. The amortized time of the minimum deletion
is thus at most logφ n+ h+O(1)− h+ logφ n+1 = 2 logφ n+O(1), and the amortized
number of key comparisons is at most 2 logφ n.

The novel part of the analysis is that of key decrease. Consider decreasing the
key of a node x. If x is a root, the key decrease takes O(1) actual time and does not
change the potential. Suppose that x is not a root. Let y be the right child of x and
u the parent of x. Consider the half tree containing x before the subtree rooted at
x is detached. Let z be the last (topmost) nonroot node whose rank decreases as a
result of the key decrease. There can be at most one 1,1-node on the path from x
to z, including x and z. Indeed, let t be the lowest 1,1-node on this path. If t = x,
then replacement of x as a child of u by y gives u a new child of rank difference one
higher than that of its old child. If on the other hand t �= x, t can decrease in rank by
at most one. In either case, every subsequent rank reduction (after the replacement
of x by y or after the rank reduction of t) is by exactly one. If a child of a 1,1-node
decreases in rank by one, then the node becomes a 1,2-node, and the rank-reduction
process stops. Thus the path from x to z cannot contain a second 1,1-node. See
Figure 6.1.
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Add one unit of potential to the 1,1-node, if any, on the path from x to z, and
add two units to the potential of x. Now every nonroot node on the path from x to z
has potential equal to the sum of the rank differences of its children minus one, and
x has two extra units of potential. Detach the half tree rooted at x, replace it by the
subtree rooted at y, and give to u all but one unit of the potential of x. Now x is a
root, it has the one unit of potential it needs (its rank is now one greater than that
of its left child), and every node on the path from u to z has potential equal to the
sum of the rank differences of its children, minus one. Finally, do the successive rank
reductions. Reducing the rank of a nonroot node by k reduces its potential by at
least 2k (2k + 1 if it becomes a 1,1-node) and increases the potential of its parent by
k, unless the parent is a 1,1-node that becomes a 1,2-node. In this case the potential
of the node decreases by two, the potential of its parent increases by two, and this is
the last rank reduction. Decreasing the rank of the root by k decreases its potential
by k without affecting the potential of any other node. Thus if we charge one unit
of time per rank reduction, the amortized time for a rank reduction other than the
last is at most zero, and that of the last is at most one. The amortized time for all
the rank reductions is at most four (three units of added potential plus at most one
for the last rank reduction). We conclude that the key decrease takes O(1) amortized
time.

Now we analyze type-1 rp-heaps. In contrast to our analysis of type-2 rp-heaps,
our analysis of type-1 rp-heaps requires a restriction on the links done during minimum
deletion. During such a deletion, we partition the half trees into two kinds, new and
old: those formed by the disassembly of the half tree rooted at the min-root are new;
the others in the heap are old. We repeatedly link pairs of new half trees, making
each tree resulting from such a link old. Once there are no two new half trees of the
same rank, we do arbitrary links until no two half trees have the same rank. We call
this restricted multipass linking. A simple way to implement such linking is to do
one-pass linking of the new half trees and then do (standard) multipass linking of all
the remaining half trees. We do not know if our analysis can be extended to arbitrary
multipass linking.

We need a more complicated potential function than the one for type-2 rp-heaps.
A single key decrease can convert an arbitrarily large number of 1,1-nodes into 0,1-
nodes. If we assign a potential to each node based only on the rank differences of its
children, we need the potential of roots to exceed that of 1,1-nodes, that of 1,1-nodes
to exceed that of 0,1-nodes, and that of 0,1-nodes to be no less than that of roots, an
impossibility. Still, key decreases have a limited effect on 1,1-nodes and 0,1-nodes, an
effect that depends on the rank differences of their grandchildren. Consider a 1,1-node
x with two 1,1-children. A decrease in the rank of x converts x into a 0,1-node whose
0-child is a 1,1-node. A 0,1-node whose 0-child is a 1,1-node cannot decrease in rank
as a result of the rank reduction of one of its children: such a node stops the cascade
of rank reductions triggered by a key decrease. This suggests a potential function that
treats such nodes as special cases. To make this idea work, we need to distinguish
between links that create 1,1-nodes with two 1,1-children and those that do not. We
partition the nodes into two kinds, good and bad. A node is good if it is a root of
rank zero (with a missing left child) or its left child is a 1,1-node; or it is a 1,1-node
of rank zero (with missing children) or its children are 1,1-nodes; or it is a 0,1-node
whose 0-child is a 1,1-node. All other nodes are bad. With this definition, the winner
of a link is a good root; the loser of a link is a 1,1-node that is good if the two roots
linked were both good, bad if at least one of the roots linked was bad.

As we show below, a key decrease can make at most one good node bad. This al-
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lows us to give good nodes anomalously low potential, thereby avoiding the circularity
problem mentioned above. There is one final difficulty, however. The tree disassembly
triggered by a minimum deletion can produce new bad roots whose potential is too
low. Such roots have enough potential to pay for links between two of them, but not
for links between one of them and a good root. This is the reason for the restriction
on linking.

It remains for us to work out the details of this idea. We define the potential of
a heap to be the sum of its node potentials. We define the potential of a node to be
the sum of the rank differences of its children, plus two if it is a root, minus one if
it is good, or plus three if it is bad. This definition applies not only to nodes that
obey the rank rule but to the node that violates the rank rule in the middle of a key
decrease. That is, the potential of a root with an i-child is i + 1 if the root is good,
i+5 if the root is bad. The potential of a 1,1-node is 1 if it is good, 5 if it is bad. The
potential of a 0,1-node is 0 if it is good, 4 if it is bad. The potential of an i, j-node
that is not a 1,1-node or a 0,1-node is i+ j + 3: all such nodes are bad.

Theorem 6.2. The amortized time for an operation on a type-1 rp-heap with re-
stricted multipass linking is O(1) for a make-heap, find-min, insert, meld, or decrease-
key, and O(logn) for a delete-min.

Proof. A make-heap, find-min, or meld operation takes O(1) actual time and does
not change the potential; an insertion takes O(1) time and increases the potential by
2, since the new root is good. Hence each of these operations takes O(1) amortized
time.

Consider a minimum deletion. During the disassembly and the links of pairs of
new half trees (those formed by the disassembly), we give each root of a new half tree
a temporary potential of four whether it is good or bad, instead of its correct potential
of 2 if it is good, 6 if it is bad. We claim that if we do this, the increase in potential
caused by the disassembly is at most 4 lgn+ 4. The only nodes whose potential can
increase are the new roots. Each bad node has at least four units of potential, so if it
becomes a root it has the four units of temporary potential that it needs. Consider
a good node x that becomes a root. There are two cases. If x is a 1,1-node, or x is
a 0,1-node whose right child is a 1-child, then we charge the four or fewer units of
temporary potential needed by x as a new root to r(x). If x is a 0,1-node whose right
child is a 0-child, then we charge the four units needed by x as a new root to r(y),
where y is the highest bad node on the right spine of x. See Figure 6.2. If there is
no such y, then we charge the four units needed by x to the minimum deletion. If y
exists, then each node on the path from x to y is a good 1,1-node except for x and
y. Since y is bad, r(y) can be charged only once for such a 0,1-node, and it cannot
be charged for a good 1,1-node or a 0,1-node whose right child is a 1-child. If y does
not exist, then each node on the right spine of x except x is a good 1,1-node. Thus x
is the only node that can produce a charge to the minimum deletion. This gives the
claim.

Now consider the links of pairs of new half trees. Each such link converts a root
into a 1,1-node and makes the remaining root good. Before the link, these nodes
have potential eight (four plus four). We give the root remaining after the link its
correct potential of two. After the link the remaining root and the new 1,1-node have
potential at most seven (two plus five), so the link reduces the potential by at least
one.

After all the links of pairs of new half trees are done, there is at most one new
half tree per rank. We give each such half tree its correct potential: 2 if it is good,
6 if it is bad. This increases the potential by at most two units for each rank less
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Fig. 6.2. Charging rule for extra potential needed by roots. Node x needs additional potential
when it becomes a root. This potential is charged to r(y), the highest bad node on the right spine
of x. Since all nodes above y on the right spine of x are good, all except x are good 1, 1-nodes. If
x = y, so that r(x) is charged, then the parent of x cannot be a good 1, 1-node, nor can x be the
0-child of a good 0, 1-node. Thus r(x) can be charged only once.

than the maximum rank, for a total of at most 2 lgn. (This bound on the potential
increase is the reason for the restriction on linking.) Then we do the remaining links.
Each such link reduces the potential by one: if at least one of the roots to be linked
is bad, then the two roots have at least 6 + 2 = 8 units of potential before the link
and at most 2 (the winner) + 5 (the loser) = 7 after the link; if both roots are good,
they have 2+ 2 = 4 units before the link and 2+ 1 = 3 after, since the loser is a good
1,1-node.

We conclude that the net increase in potential caused by the entire minimum
deletion is at most 6 lgn + 4, minus one per link. Let h be the number of half trees
after the disassembly. The entire minimum deletion takes h− 1 key comparisons and
O(h + 1) time. Scale this time to be at most h+O(1). At most lg n + 1 half trees
remain after all links, so there are at least h− lg n− 1 links. The minimum deletion
thus increases the potential by at most 7 lgn − h + 1, giving an amortized time of
O(logn) and at most 7 lgn+ 5 amortized key comparisons.

The analysis of a key decrease at a node x is just like that for type-2 heaps,
except that we must show that the key decrease can make only O(1) nodes bad. A
good 1,1-node cannot become bad; it can only become a good 0,1-node. A good
0,1-node cannot decrease in rank, so if it becomes bad it is the last node at which a
rank-reduction step occurs. If x becomes a root, then it can only become bad if it
were previously a good 0,1-node with a right 0-child, in which case no ranks change
and x is the only node that becomes bad. For the root of the old half tree containing
x to become bad, its left child must be a 1,1-node, and the old root is the only node
that becomes bad. We conclude that the key decrease can make only one node bad.
If we give the one node that becomes bad four units of potential before the rank-
reduction process, then each reduction of a node rank reduces the potential by at
least one, paying for the decrease. The key decrease can also create one new root, for
a potential increase of two. Thus the key decrease takes O(1) amortized time.

The worst-case time for a key decrease in an rp-heap of either type is Θ(n), as
it is for Fibonacci heaps. We can reduce this to O(1) by delaying each key decrease
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Fig. 7.1. An unfair link.

operation until the next minimum deletion. This requires maintaining the set of nodes
that might have the minimum key; namely, all the roots and all nodes whose keys
have decreased since the last minimum deletion.

7. One-tree rank-pairing heaps. It is natural to ask whether there is a one-
tree version of rp-heaps. An ideal solution would handle unfair links (those in which
the nodes to be linked have different ranks) in the same way as fair links, as in
section 4: the loser of a fair link becomes the new left child of the winner. We have
been unable to obtain a provably efficient version that does this. Instead, we offer
here a one-tree version of rp-heaps that handles fair and unfair links differently. If x is
a node, then the right spine of left(x) contains all the losers of links, with the newest
loser the shallowest. That is, it is a stack of the losers to x. Make each such spine a
deque (double-ended queue) instead of a stack. If y loses a fair link to x, push y onto
the stack, making it the new left child of x; if y loses an unfair link to x, inject y into
the bottom of the stack, making it the new deepest node on the right spine of left(x).
(See Figure 7.1.) In addition, when y loses a fair link to x, set its rank to −1; do
not change the rank of x. The −1 is merely a flag that prevents rank reduction from
propagating through losers of unfair links. When the loser of an unfair link becomes
a root again, either because its key has decreased or as a result of disassembly, set its
rank equal to one greater than that of its left child.

Represent a heap by a single half tree. To insert an item into a heap, make it
into a one-node half tree and link this half tree with the existing half tree, by a fair
or unfair link as appropriate. To meld two heaps, link their half trees, by a fair or
unfair link. To do a minimum deletion, disassemble the half tree, link the half trees
formed by the disassembly by fair links until no two remaining trees have equal rank,
and then link the remaining half trees by unfair links. If the heap is of type 1, do
the fair links by the restricted multipass method (section 6). Do a key decrease as in
section 5; once the rank-reduction process stops, if there are two trees, link them, by
a fair or unfair link.

To implement this method efficiently, we need to change the pointer structure so
that unfair links can be done in O(1) time. One way of doing this is to make each
node with a left child point not to its left child but to the bottommost node on the
right spine of its left child, and to make this bottommost node (which has no right
child) point to the left child. (See Figure 7.2.) Other representations are possible.
Which is best is a question for experiments to resolve.

The analysis of one-tree rp-heaps is like that of one-pass rp-heaps except that we
must account for unfair links. There is one unfair link per insert, meld, and decrease-
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Fig. 7.2. A one-tree rp-heap representation that uses three pointers per node. Unfair losers get
a temporary rank of −1 to prevent rank reduction from propagating through them.

key, and O(logn) per delete-min. We give losers of unfair links the same potential
as roots: in effect, they are roots. It is then straightforward to extend the proofs of
Theorems 6.1 and 6.2 to one-tree rp-heaps.

8. Can key decrease be made simpler? It is natural to ask whether there
is an even simpler way to decrease keys while retaining the amortized efficiency of
Fibonacci heaps. We give two answers: “no” and “maybe.” We answer “no” by
showing that two possible methods fail. The first method allows arbitrarily negative
but bounded positive rank differences. With such a rank rule, the rank-reduction
process following a key decrease need examine only ancestors of the node whose key
decreases, not their siblings. Such a method can take Ω(logn) time per key decrease,
however, as the following example shows. Let b be the maximum allowed rank dif-
ference. Choose k arbitrarily. By means of a suitable sequence of insertions and
minimum deletions, build a heap that contains a perfect half tree of each rank from
0 through bk+1. Let x be the root of the half tree of rank bk+1. Consider the right
spine of left(x). Decrease the key of each node on this path whose rank is not divisible
by b. Each such key decrease takes O(1) time and does not violate the rank rule, so
no ranks change. Now the path consists of k + 1 nodes, each with rank difference b
except the topmost. (See Figure 8.1.) Decrease the keys of these nodes, from smallest
rank to largest. Each such key decrease will cause a cascade of rank reductions all the
way to the topmost node on the path. The total time for these k+1 key decreases is
Ω(k2). After all the key decreases, the heap contains three perfect half trees of rank
zero and two of each rank from 1 through bk. A minimum deletion (of one of the
roots of rank zero) followed by an insertion makes the heap again into a set of perfect
half trees, one of each rank from 0 through bk + 1. Each execution of this cycle does
O(logn) key decreases, one minimum deletion, and one insertion, and takes Ω(log2 n)
time.
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x

bk

bk + 1

bk b

bk 2b

0

Fig. 8.1. A half tree of rank bk+1 in the counterexample to the key decrease method that allows
arbitrary negative rank differences but positive rank differences bounded by b. A sequence of k + 1
key decreases on the right spine of left(x), from smallest rank to largest, requires Ω(k2) total time.

The second, even simpler method spends only O(1) time worst-case on each key
decrease, thus avoiding arbitrary cascading. In this case, by doing enough operations
one can build a half tree of each possible rank, up to a rank that is ω(logn). Once this
is done, repeatedly doing an insertion followed by a minimum deletion (of the just-
inserted item) will result in each minimum deletion taking ω(logn) time. Here are
the details. Suppose each key decrease changes the ranks of nodes at most d pointers
away from the node whose key decreases, where d is fixed. Choose k arbitrarily. By
means of a suitable sequence of insertions and minimum deletions, build a heap that
contains a perfect half tree of each rank from 0 through k. On each node of distance
d + 2 or greater from the root, in decreasing order by distance, do a key decrease
with Δ = ∞ followed by a minimum deletion. No roots can be affected by any of
these operations, so the heap still consists of one half tree of each rank, but each
half tree contains at most 2d+1 nodes, so there are at least n/2d+1 half trees. Now
repeat the cycle of an insertion followed by a minimum deletion. Each such cycle
takes Ω(n/2d+1) time. The choice of “d+ 2” in this construction guarantees that no
key decrease can reach the child of a root, and hence cannot change the rank of a root
(other than the node whose key decreases).

This construction works even if we add extra pointers to the half trees, as in
Fibonacci heaps. Suppose we add ordered ancestor pointers to our half trees. Even
for such an augmented structure, the latter construction gives a bad example, except
that the size of a constructed half tree of rank k is O(kd+1) instead of O(2d+1), and
each cycle of an insertion followed by a minimum deletion takes Ω(n1/(d+2)) time.

One limitation of this construction is that building the initial set of half trees
takes a number of operations exponential in the size of the heap on which the repeated
insertions and minimum deletions are done. Thus it is not a counterexample to the
following question: is there a fixed d such that if each key decrease is followed by at
most d rank-reduction steps (say of type 1), then the amortized time is O(1) per insert,
meld, and decrease-key, and O(logm) per delete-min, where m is the total number
of insertions? A related question is whether Fibonacci heaps without cascading cuts
have these bounds. We conjecture that the answer is yes for some positive d, perhaps
even d = 1. The following counterexample shows that the answer is no for d = 0. That
is, the answer is no for the method in which a key decrease changes no ranks except
for the ranks of roots. For arbitrary k, build a half tree of each rank from 0 through
k, each consisting of a root and a path of left children, by proceeding inductively as
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Fig. 8.2. A half tree of rank k = 4 buildable in O(k3) operations if key decreases do not change
ranks. Key decreases on the nodes of P detach the circled subtrees.

follows. Given such half trees of ranks 0 through k − 1, insert an item less than all
those in the heap and then do k cycles, each consisting of an insertion followed by
a minimum deletion that deletes the just-inserted item. The result will be one half
tree of rank k consisting of the root, a path of left children descending from the root,
a path P of right children descending from the left child of the root, and a path of
left children descending from each node of P ; every child has rank difference 1. (See
Figure 8.2.) Do a rank reduction on each node of P . This produces a set of half trees
of ranks 0 through k except for k − 1, each a path. Repeat this process on the set of
half trees up to rank k − 2, resulting in a set of half trees of ranks 0 through k with
k− 2 missing. Continue in this way until only rank 0 is missing, and then do a single
insertion. Now there is a half tree of each rank, 0 through k. The total number of
heap operations required to increase the maximum rank from k − 1 to k is O(k2), so
in m heap operations one can build a set of half trees of each possible rank up to a
rank that is Ω(m1/3). On the heap represented by this set of half trees, an insertion
followed by a minimum deletion takes Ω(m1/3) time, and this pair of operations can
be repeated any number of times.

9. Remarks. We have presented a new data structure, the rank-pairing heap,
that combines the performance guarantees of Fibonacci heaps with simplicity ap-
proaching that of pairing heaps. Like pairing heaps, the trees in rp-heaps can have
arbitrarily unbalanced structure; unlike pairing heaps, rp-heaps use ranks to guaran-
tee efficiency. As Fredman [13] showed, subject to certain technical constraints, some
information such as ranks must be stored to guarantee efficiency; our data structure
obeys the constraints of Fredman’s bound. Our results build on previous work by
Peterson, Høyer, Kaplan and Tarjan, and others, and may be the natural conclusion
of this work: we have shown that simpler methods of doing key decreases do not have
the desired efficiency.

Type-1 rp-heaps, although simple, are not simple to analyze. Indeed, we were
surprised to discover that type-1 rp-heaps have the same efficiency as Fibonacci heaps.
This is less surprising for type-2 heaps. One can make the analysis even simpler
by relaxing the data structure even more, specifically by disallowing 0,2-nodes but
allowing 1,3-nodes. This gives the type-3 rp-heap: every nonroot is a 1,1-node, a 1,2-
node, a 1,3-node, or a 0, i-node for some i > 2. For this data structure, giving each
root a potential of one and each nonroot a potential equal to minus two plus the sum
of the rank differences of its children allows one to prove the analogue of Theorem 6.1.
The trade-off is that the subtree size bound (the analogue of Lemma 5.3) is worse for
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type 3 than for type 2. Type 2 seems to us to be the sweet spot of the design space:
simple, not too hard to analyze, with small constant factors.

Our preliminary experiments suggest that rp-heaps are competitive in practice
with pairing heaps. Much more thorough and careful experiments remain to be done
to compare these structures and others. We leave this for the future.

Several interesting theoretical questions remain. Is there a simpler analysis of
type-1 rp-heaps? Do type-1 rp-heaps still have the efficiency of Fibonacci heaps if the
restriction on linking used in the analysis of section 6 is removed? More interestingly,
can one obtain an O(1) amortized time bound for insert, meld, and decrease-key and
O(logm) for delete-min (where m is the total number of insertions) if only O(1) rank
changes are made after each key decrease? (See section 8.)

Acknowledgments. We thank Haim Kaplan and Uri Zwick for extensive dis-
cussions that helped to clarify the ideas in this paper, and for pointing out an error
in our original analysis of type-1 rp-heaps.
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