
SENSEI: Aligning Video Streaming Quality with Dynamic User Sensitivity

Xu Zhang
University of Chicago

Yiyang Ou
University of Chicago

Siddhartha Sen
Microsoft Research

Junchen Jiang
University of Chicago

Abstract
This paper aims to improve video streaming by leveraging a

simple observation—users are more sensitive to low quality

in certain parts of a video than in others. For instance, re-

buffering during key moments of a sports video (e.g., before

a goal is scored) is more annoying than rebuffering during

normal gameplay. Such content-dependent dynamic quality

sensitivity, however, is rarely captured by current approaches,

which predict QoE (quality-of-experience) using one-size-fits-

all heuristics that are too simplistic to understand the nuances

of diverse video content.

The problem is that none of these approaches know the true

dynamic quality sensitivity of a video they have never seen

before. Therefore, instead of proposing yet another heuristic,

we take a different approach: we run a separate crowdsourc-
ing experiment for each video to derive the quality sensitivity

of users at different parts of the video. Of course, the cost

of doing this at scale can be prohibitive, but we show that

careful experiment design combined with a suite of pruning

techniques can make the cost negligible for content providers.

For example with a budget of just $31.4/minute video, we can

predict QoE 37.1% more accurately than recent QoE models.

Our ability to accurately profile time-varying user sensitiv-

ity inspires a new approach to video streaming—dynamically
aligning higher (lower) quality with higher (lower) sensitivity
periods. We present a new video streaming system called SEN-

SEI that profiles and incorporates dynamic quality sensitivity

into existing quality adaptation algorithms. We apply SENSEI

to two state-of-the-art adaptation algorithms, one rule-based

and one based on deep reinforcement learning. SENSEI can

take seemingly unusual actions, e.g., lowering quality even

when bandwidth is sufficient to prepare for higher quality

sensitivity in the near future. Compared to state-of-the-art

approaches, SENSEI improves QoE by 15.1% or achieves the

same QoE with 26.8% less bandwidth on average.

1 Introduction
An inflection point in Internet video traffic is afoot, driven

by more ultra-high resolution videos, more large-screen de-

vices, and ever-lower user patience for low quality [2, 10].

At the same time, the video streaming industry, after several

decades of evolution, is seeing diminishing improvements:

recent adaptive bitrate (ABR) algorithms (e.g., [45, 56, 83])

achieve near-optimal balance between bitrate and rebuffer-

ing events, and recent video codecs (e.g., [54, 72]) improve

encoding efficiency but require an order of magnitude more

computing power than their predecessors. The confluence

of these trends means that the Internet may soon be over-

whelmed by online video traffic,1 and new ways are needed

to attain fundamentally better tradeoffs between bandwidth
usage and user-perceived QoE (quality of experience).

We argue that a key limiting factor is the conventional

wisdom that users care about quality in the same way through-

out a video, so video quality should be optimized using the

same standard everywhere in a video. This means that lower

quality—due to rebuffering, low visual quality, or quality

switches—should be avoided identically from the beginning

to the end. We argue that this assumption is not accurate. In

sports videos (e.g., the one in Figure 1), a rebuffering event

that coincides with scoring tends to inflict a more negative

impact on user experience than rebuffering during normal

gameplay. But there are also sports videos where scoring is

not the most quality-sensitive part. Thus, user quality sensi-

tivity varies with the video content dynamically over time.

Unfortunately, both the literature on ABR algorithms and

the literature on QoE modeling adopt the conventional wis-

dom. Most ABR algorithms completely ignore the content

of each video chunk: they focus on balancing high bitrates

and low rebuffering times, and thus consider only the size and

download speed of the chunks. Traditional ways of modeling

QoE are also agnostic to the substance of videos, although re-

cent QoE models—e.g., PSNR [38], SSIM [80], VMAF [11],

and deep-learning models [33, 48]—try to find frames that

users are more sensitive to by studying the structure of pixels

and motions to gauge their saliency. These heuristics seek to

generalize across all videos and thus resort to generic mea-

sures (like pixel-level differences), but it is unclear if any

heuristic can capture the diverse and dynamic influence a

video’s content can have on users’ sensitivity to quality.

For example, models like LSTM-QoE [33] assume that

users are more sensitive to rebuffering events in more “dy-

1This is vividly illustrated by the recent actions taken by YouTube and

Netflix (and many others) to lower video quality in order to save ISPs from

collapsing as more people stay at home and binge watch online videos [12].



namic” scenes. In sports videos, however, non-essential con-

tent like ads and quick scans of the players can be highly

dynamic, but users may care less about quality during those

moments. In the video in Figure 1, LSTM-QoE considers

normal gameplay to be the most dynamic part, but the most

quality-sensitive part of the video according to our user study

is the goal. A key insight is that the impact of the substance

of a video on users’ sensitivity to quality cannot be fully ex-

plained by pixel-level patterns or cross-frame motions. Some

recent work tries to predict user’s dynamic sensitivity, but

they either need access to users’ viewing history [35] or use

off-the-shelf computer-vision saliency models [34] whose

predictions have little correlation with quality sensitivity on

videos they have never seen before (§2.3 elaborates on this).

The dynamic nature of quality sensitivity suggests a new

avenue for improvement. One can achieve higher QoE with
the same bandwidth by carefully lowering the current quality

in order to save bandwidth and allow higher quality when

users become more sensitive. Similarly, one can attain similar
QoE with less bandwidth by judiciously lowering the quality

when quality sensitivity is indeed low. In short, we seek

to align higher (lower) quality of video chunks with higher
(lower) quality sensitivity of users.

We present SENSEI, a video streaming system that incorpo-

rates dynamic quality sensitivity into its QoE model and video

quality adaptation. SENSEI addresses two key challenges.

Challenge 1: How do we profile the unique dynamic quality
sensitivity of each video in an accurate and scalable manner?

Crowdsourcing the true quality sensitivity per video: In-

stead of proposing another heuristic, SENSEI takes a different

approach. We run a separate crowdsourcing experiment for
each video to derive the quality sensitivity of users at differ-

ent parts of the video. Specifically, we elicit quality ratings

directly from real users (obtaining a “ground truth” of their

QoE) for multiple renderings of the same video, where each

rendering includes a quality degradation in some part of the

video. SENSEI automates and scales this process out using

a public crowdsourcing platform (Amazon MTurk), which

provides a large pool of raters, while using pruning techniques

to reduce the number of rendered videos that need to be rated.

We then use these ratings to estimate a weight for each video

chunk that encodes its quality sensitivity, independent of the

quality of other chunks. While crowdsourcing has previously

been used to model QoE, SENSEI is to our knowledge the first

to scale it to per-video QoE modeling.

Challenge 2: How do we incorporate dynamic quality sensi-
tivity into a video streaming system to enable new decisions?
Today’s video players are designed to be “greedy”: they pick

a bitrate that maximizes the quality of the next chunk while

avoiding rebuffering events. But in order to utilize dynamic

quality sensitivity, a player must “schedule” bitrate choices

over multiple future chunks, each having a potentially differ-

ent quality sensitivity. This means that some well-established

behaviors of video players, e.g., only rebuffer when the buffer

is empty, may need to be revisited.

Refactoring ABR logic to align with dynamic quality sen-
sitivity: SENSEI works within the popular DASH framework.

It integrates the aforementioned per-chunk weights into exist-

ing ABR algorithms to leverage the dynamic quality sensitiv-

ity of upcoming video chunks when making quality adapta-

tion decisions. The per-chunk weights enable new adaptation

actions that “borrow bandwidth” from low-sensitivity chunks

and give them to high-sensitivity chunks. For example, SEN-

SEI may lower the bitrate even when bandwidth is sufficient,

or initiate a rebuffering event with a non-empty buffer, to af-

ford higher bitrates when quality sensitivity becomes higher.

We apply SENSEI to two state-of-the-art ABR algorithms:

Fugu [83], a more traditional rule-based algorithm, and Pen-

sieve [56], a deep reinforcement learning-based algorithm.

Using its scalable crowdsourcing approach, SENSEI can

predict QoE more accurately than state-of-the-art QoE mod-

els. For example, with a budget of just $31.4/minute video,

SENSEI achieves 55% less QoE prediction error than existing

models. Compared to state-of-the-art ABR algorithms, SEN-

SEI improves QoE on average by 15.1% or achieves the same

QoE with 26.8% less bandwidth across various video genres.

Contributions and roadmap: Our key contributions are:

• A measurement study revealing substantial temporal vari-

ability in users’ quality sensitivity and its potential for im-

proving video streaming QoE and bandwidth usage (§2).

• The design and implementation of SENSEI, including: 1)

a scalable crowdsourcing solution to profiling the true dy-

namic quality sensitivity of each video (§4,§5),2 and 2) a

new ABR algorithm that incorporates dynamic user sensi-

tivity into existing algorithms and frameworks (§6).

2 Motivation
We begin by showing that existing approaches to modeling

video streaming QoE fail to accurately capture the true user-

perceived QoE (2.1). We then present user studies that reveal

a missing piece in today’s QoE modeling: users’ quality sen-

sitivity varies dynamically throughout a video (§2.2), and

this dynamic quality sensitivity is hard to capture using prior

heuristics or vision models (§2.3). However, by incorporating

dynamic quality sensitivity into existing ABR algorithms, we

can significantly improve QoE and save bandwidth (§2.4).

2.1 Prior QoE modeling and their limitations
QoE models are crucial to modern video streaming systems.

A QoE model takes a streamed video as input and returns a

predicted QoE as output. When streaming a video, the video

player optimizes QoE by adapting the bitrate of each video

chunk to the available bandwidth. QoE is often measured by

the mean opinion score (MOS) assigned by a group of users

to the quality of a video.3

2Our study was IRB-approved (IRB18-1851).
3Our methodology extends to other QoE metrics as well.



Figure 1: Example of dynamic quality sensitivity. Users are
asked to rate the quality (on a scale of 1 to 5) of different
renderings of a source video (Soccer1), where a 1-second
rebuffering event occurs at a different place in each rendering.
We observe substantial differences in the QoE impact (mea-
sured by mean opinion score, or MOS) across the renderings.

Quality metrics: Today’s QoE models consider two aspects.

• Pixel-based visual quality tries to capture the impact of

visual distortion on QoE. These metrics, such as PSNR and

VMAF, are based on pixel/motion-based patterns [11, 38,

48,63,68,79,80] and recently on visual attention [27,44,86].

• Streaming quality incidents during the streaming process

can negatively impact user experience, such as rebuffering,

low bitrate, and bitrate switches. Their impact is modeled

by metrics, such as rebuffering ratio, average bitrate, and

frequency of bitrate switches during a video (e.g., [18, 28]).

Some work also considers contextual factors (e.g., viewer’s

emotion, acoustic conditions, etc.), but these are orthogonal

to our focus on the video’s content.

QoE models: Recent QoE models combine both pixel-based

visual quality metrics and quality-incident metrics for more

accurate QoE prediction. We consider three such QoE models:

KSQI [29], P.1203 [66], and LSTM-QoE [33], which were

proposed within the past two years and have open-source

implementations. KSQI combines VMAF, rebuffering ratio,

and quality switches in a linear regression model. P.1203

combines QP (quantization parameter) and quality incident

metrics in a random-forest model. Most recently, LSTM-QoE

takes STRRED [68] and individual quality incidents as in-

put to a long short-term memory (LSTM) neural network

designed to capture the “memory effect” of human perception

of past quality incidents. (We discuss related work in §8.)

User study methodology: We evaluate these QoE models

(KSQI, P.1203, LSTM-QoE) on 16 source videos randomly

selected from four public datasets [21, 30, 36, 78], covering

a wide range of content genres (sports, scenic, movies, etc.).

These videos are streamed using one of three ABR algorithms:

Fugu [83], Pensieve [56], and BBA [45], over 7 through-

put traces randomly selected from real-world cellular net-

works [5, 65], with bandwidths ranging from 200Kbps to

Figure 2: Existing QoE models exhibit substantial QoE pre-
diction errors (x-axis), which cause them to frequently mis-
predict the relative QoE ranking between two ABR algorithms
on the same video, i.e., a discordant pair (y-axis).

6Mbps. §7.1 and Appendix A provide more details on the

videos and network traces. This creates 336 (16×7×3) ren-

dered videos. To obtain the ground truth QoE of each rendered

video, we elicit QoE ratings from crowdsourced workers on

Amazon MTurk [1]. We obtain at least 30 ratings from differ-

ent MTurkers and use the MOS over these ratings as the true

QoE of the rendered video. §4 and §5 describe our crowd-

sourcing methodology in detail.

QoE prediction accuracy: Given the ground-truth QoE, we

evaluate the three QoE models both with their pre-trained

parameters and after customizing (retraining) them on 315 of

the rendered videos selected at random. All models are tested

on the remaining 21 videos; we scale their output range and

the true QoE to [0,1]. The x-axis of Figure 2 shows the mean

relative prediction error of each QoE model on the test set;

relative prediction error is defined as |Qpredict−Qtrue|/Qtrue, where

Qpredict and Qtrue are the predicted and true QoE of the video.

We see that these errors are nontrivial; even the most accurate

QoE model has over 10.4% error on average.

We also examine whether these models can correctly rank
the QoE achieved by two different ABR algorithms. For each

pair of source video and throughput trace, we first rank every

two of the three ABR algorithms using their true QoE and

then again using the predicted QoE. If the rank is different,

this pair is called a discordant pair. The y-axis of Figure 2

shows the fraction of discordant pairs among all possible pairs

(a common measure used in rank correlation): over 10.2% of

pairs are discordant even for the most accurate QoE model.

This suggests that using QoE predictions to compare different

algorithms (e.g., [45, 56, 83]) may not be reliable.

2.2 Temporal variability of quality sensitivity
Figure 2 shows that, unlike prior methods, our QoE model

(§4) can predict QoE and rank ABRs significantly more accu-

rately when applied on the same train/test set. We argue that

this gap stems from a common assumption shared by all pre-

vious QoE models, which is that all factors affecting QoE can

be captured by a handful of objective metrics. This premise

ignores the impact of high-level video content (rather than

low-level pixels and frames) on users’ sensitivity to quality

at different parts of the video. We now demonstrate how this

quality sensitivity varies as video content changes.

Quantifying dynamic quality sensitivity: Users’ sensitiv-
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Figure 3: Impact of different quality incidents at different
points in the video in Figure 1. The pattern of variability
remains the same across the different quality incidents. Error
bars show standard deviation of the means.

ity to quality at a certain part of a video is reflected by the

QoE drop when a low-quality incident occurs at that part of

the video, i.e., Δ=Qbe f ore−Qa f ter, where Qbe f ore is the MOS of the

video without the low-quality incident and Qa f ter is the MOS

of the video with the low-quality incident. To measure the true

quality sensitivity at different parts of a source video, we cre-

ate a rendered video series as follows. Rendered videos in a

video series have the same source content and highest quality

(highest bitrate without rebuffering), except that a low-quality

incident (a rebuffering event or a bitrate drop) is deliberately

added at different positions, e.g., at the 4th second, 8th sec-

ond, and so forth. Then, as before, we use Amazon MTurk to

crowdsource the true QoE of each rendered video, following

our crowdsourcing methodology (§4,§5).

Figure 1 shows an example video series created using a

25-second soccer video as the source video and a one-second

rebuffering event as the low-quality incident. We observe

significant differences between the QoE drops caused by the

rebuffering event at different parts of the video. The high-

est QoE drop (caused by rebuffering at the 15th second) is

2.1× higher than the lowest QoE drop (rebuffering at the

10th second). This shows that a low-quality incident can have

a significantly higher/lower impact on user experience if it

occurs a few seconds earlier or later.

Quality sensitivity is inherent to video content: Our user

study also suggests that the type of low-quality incident does

not affect the ranking of QoE drops within a video series, even

though it affects the absolute QoE drops. In other words, qual-

ity sensitivity seems to be inherent to different parts (contents)

of the video. Figure 3 shows the dynamic user sensitivity

of three low-quality incidents on the same source video: 1-

second rebuffering, 4-second rebuffering, and a bitrate drop

from 3Mbps to 0.3Mbps for 4 seconds. Although the abso-

lute values of the QoE drops depend on the particular quality

incident, the relative rankings are identical. The strong rank

correlation (measured by Spearman’s rank coefficient) is per-

sistent across all videos in our dataset: 0.95 rank coefficient

between the 1-second and 4-second rebuffering events and

0.94 between the 1-second rebuffering and bitrate drop.

Sources of dynamic quality sensitivity: We speculate that

the dynamic quality sensitivity stems from users paying dif-

ferent degrees of attention to different parts of a video. In our
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Figure 4: QoE rating drop when adding a 1-sec rebuffering
at different points in the video, compared to chunk sensitivity
levels inferred by saliency models.

dataset, we identify at least three types of moments when users

tend to be more (or less) attentive to video quality than usual.

The first are key moments in the storyline of a video when ten-

sions have built up; e.g., in BigBuckBunny (animation) when

the bullies fall into a trap set by the bunny, or in Soccer1
when a goal is scored. The second are moments when users

must pay attention to get important information; e.g., showing

the scoreboard in sports videos (Soccer2), or acquiring sup-

plies after killing an enemy (FPS2). The third are transitional

moments with scenic backgrounds, when users tend to be less

attentive to quality; e.g., the universe background in Space.

2.3 Modeling quality sensitivity
Can it be captured by QoE models? Traditional QoE mod-

els predict the same QoE for all rendered videos in a video

series. Even models that do predict different QoE assume

that the impact of video content can be captured by pixels

and motions; e.g., VMAF [11] (the visual quality metric used

by KSQI) gives lower QoE estimates if a bitrate drop occurs

when the frame pixels are more “complex”. Unfortunately, the

impact of content on user sensitivity discussed above cannot

be fully captured by pixel-level patterns. In Figure 1, the true

highest QoE drop occurs when the low-quality incident oc-

curs during the goal, but both VMAF and LSTM-QoE predict

that it occurs during normal gameplay.

Can it be captured by vision saliency? User sensitivity is

conceptually similar to temporal saliency in computer vision.

Can saliency/highlight detection models capture user sensitiv-

ity to quality? We examine three representative approaches.

• Traditional motion-based models, such as AMVM (average

motion-vector magnitude) [13, 52], use the motion vector

magnitudes of pixels in a chunk to indicate user sensitivity—

i.e., users are more sensitive to more dynamic scenes.

• Interestingness score per frame (highlight detection), such

as Video2GIF [39] and [34], train a regression model (us-

ing C3D [75] neural network as the spatio-temporal feature

extractor) on videos with human-annotated per-frame inter-

estingness scores.4 The model then produces a per-frame

interestingness score which might indicate user sensitivity.

4We notice that some content providers passively monitor the number of

viewers at different parts of a video (e.g., [6]), which is an alternative way of

identifying highlights or high-interestingness chunks.
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• Video summarization models, such as dppLSTM [87] and

DSN [90], infer how important each frame is to the whole

story of a video, by extracting vision features [74] and

using an LSTM to model temporal dependencies. The more

important a frame is, the higher user sensitivity might be.

Figure 4 shows the average saliency scores (normalized to

[0,1]) returned by these models at each chunk of two example

videos. We see a weak correlation between the QoE drops

caused by a 1-sec rebuffering event at different chunks and

the true user sensitivity. Overall, such correlation is low for

all videos in our dataset: less than 0.23 (Pearson’s correlation)

and 0.18 (Spearman’s rank correlation). To see an example, in

the soccer video (Figure 1), the part right before the goal is the

most quality sensitive. However, the highlight detection and

motion-based models highlight the highly dynamic scenes

that pan across the audience, and the video summarization

model picks diverse moments of a video, such as shot/rewind

clips, whereas users pay more attention to when a goal might

be scored. Appendix D gives more discussions. As a result,

ABR logic based on saliency scores performs poorly (§7).

2.4 Potential gains
Dynamic quality sensitivity is prevalent: We repeat the

same experiment from Figure 1 on all 16 source videos in

our dataset and three low-quality incidents: 1-second rebuffer-

ing, 4-second rebuffering, and a bitrate drop from 3Mbps

to 0.3Mbps for 4 seconds. This creates 48 video series in

total. Figure 5 plots the sensitivity variability defined by

(Δmax−Δmin)/Δmin for each video series, where Δmax and Δmin are

the maximum and minimum QoE drop of the videos in a

series. We see that 21 of the 48 video series have a sensitiv-

ity variability of over 0.99, while some have less than 0.20

variability. A similar trend holds even if we localize the low-

quality incident and sensitivity gap measurement to 12-second

windows. The fact that quality sensitivity varies substantially

even among very nearby chunks suggests a new opportunity:

we can lower the quality when sensitivity is low in order to

save bandwidth for nearby chunks whose sensitivity is high.

Potential sensitivity-aware improvement: The above sug-

gests that we can improve ABR algorithms to optimize QoE

and save bandwidth by aligning quality adaptation with dy-
namic user sensitivity. We demonstrate the potential gains
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Figure 6: Being aware of dynamic quality sensitivity can
significantly improve QoE and save bandwidth.

using an idealistic but clean experiment. We create two sim-

ple ABR algorithms whose only difference is the QoE model

they optimize: one algorithm optimizes KSQI, the most ac-

curate QoE model from Figure 2 that is unaware of dynamic

quality sensitivity, and the other optimizes our eventual QoE

model from §4, which is aware of dynamic quality sensitiv-

ity. Both algorithms take as input an entire throughput trace

and the same 4-second video chunks encoded using the same

bitrate levels. They then determine a bitrate-to-chunk assign-

ment that maximizes their respective QoE model. Note that

these ABR algorithms are idealistic because they have access

to the entire throughput trace in advance, and hence know

the future throughput variability. However, this allows us to

eliminate the confounding factor of throughput prediction. We

pick one of the throughput traces (results are similar with the

other traces) and rescale it to {20,40, . . . ,100}% to emulate

different average network throughputs.

For each source video, we create the rendered video as if it

were streamed by each ABR algorithm (with bitrate switches,

rebufferings, etc.). We use Amazon MTurk as before to assess

the true QoE of the rendered video. Figure 6 shows the aver-

age QoE of the two ABR algorithms across 16 source videos

and different average bandwidths. We see that being aware of

dynamic quality sensitivity could improve QoE by 22-52%

while using the same bandwidth, or save 39-49% bandwidth

while achieving the same QoE.

3 Overview of SENSEI
We have shown that knowing the true quality sensitivity of a

video can lead to significant performance improvements when

streaming the video. To unleash this potential, we present

SENSEI, a video streaming system that unearths and leverages

dynamic quality sensitivity. Here, we overview SENSEI (§3.1)

and then introduce our crowdsourcing-based approach to per-

video QoE modeling and its limitations (§3.2).

3.1 SENSEI’s approach
As shown in Figure 7, SENSEI has two main components.

Per-video QoE modeling: Before streaming a video, SEN-

SEI profiles the quality sensitivity of its chunks. As we saw in

§2.2, prior QoE models fail to capture content-induced user

sensitivity to quality. Instead, we advocate for directly asking

human viewers to rate the quality of rendered videos with

quality incidents inserted at various chunks. This reveals the

true user sensitivity to quality incidents. Since quality sensi-

tivity is unique to each video, this user study must be scaled



Figure 7: Overview of SENSEI.

to many videos. SENSEI uses crowdsourcing to automate and

scale the per-video QoE modeling, by addressing two chal-

lenges: (1) how many (and which) rendered videos must be

rated to build a sensitivity-aware QoE model (§4); and (2)

how to get reliable ratings from crowdsourced workers (§5).

Sensitivity-aware ABR: Video players today are designed

to maximize bitrate without rebuffering on every chunk. This

is ill-suited to our goal of aligning quality adaptation with

dynamic quality sensitivity: quality should be optimized in

proportion to the quality sensitivity of the content. To achieve

this, SENSEI refactors the control logic of video players to en-

able new adaptation actions that “borrow” resources from low-

sensitivity chunks and give them to high-sensitivity chunks.

We discuss the details in §6.

Instead of building a separate QoE model for each video,

SENSEI reuses existing QoE models but reweights each chunk

by its quality sensitivity. This is inspired by our observation

that relative quality sensitivity is inherent to the content, rather

than the specific quality incident (§2.2). Thus we assign a

weight to each chunk to encode its inherent quality sensitiv-

ity. The abstraction of per-chunk weights has two benefits.

First, it allows us to reuse existing QoE models by simply

reweighting the quality of different chunks. Second, by us-

ing the sensitivity weights as input, the same SENSEI ABR

algorithm can be used to optimize QoE for any new video.

3.2 Crowdsourcing quality sensitivity per video
SENSEI directly elicits quality ratings from human viewers

to reveal their quality sensitivity to various quality incidents.

However, these user ratings must be elicited per video and the

sheer scale of this feedback can be prohibitive! To put it into

perspective, QoE models are usually built from user ratings

on just a handful of source videos [21,31], but getting enough

user ratings requires a lab environment (or survey platform)

to recruit participants and have them watch over two orders

of magnitude more video content than the source videos. 5

This does not scale if we repeat the process per video.

To address this, we use crowdsourcing platforms like Ama-

zon MTurk [1] to automate the user studies and scale them

out to more videos. Crowdsourcing reduces the overhead

of participant recruitment, survey dissemination, and result

collection (down to about 78 minutes), and provides a large

pool of participants. This allows for repeated experiments to

5For instance, in the WaterlooSQOE-III dataset [31], each video is

streamed over 13 throughput traces with 6 ABR algorithms, and each ren-

dered video is then rated by 30 users.

Figure 8: Workflow of profiling dynamic quality sensitivity
using a crowdsourcing platform. The arrow back to the sched-
uler means that crowdsourced ratings may be used to suggest
more rendered videos to iteratively refine the QoE modeling.

help control for human-related statistical noise. Although the

crowdsourcing cost grows with video length, SENSEI offers

several techniques to reduce the cost (see §4). Thus, the con-

tent providers can decide whether and how to initiate profiling

given their budgets. Note that our reliance on crowdsourcing

makes some scenarios, e.g., live video streaming, currently

inapplicable (see §9).

4 Profiling Quality Sensitivity at Scale
In this section, we show how to build an accurate and cost-

efficient QoE model using crowdsourcing. We overview our

workflow (§4.1) and then discuss low-cost methods for chunk-

level reweighting (§4.2) and crowdsourcing scheduling (§4.3).

4.1 QoE modeling workflow
Figure 8 shows SENSEI’s workflow for QoE modeling. SEN-

SEI takes a source video and a monetary budget as input

and returns a QoE model that incorporates dynamic quality

sensitivity (customized for this video) as output.

• Rendered video scheduling (§4.3): We first generate a set

of rendered videos from the source video. Each rendered

video is created by injecting a carefully selected low-quality

incident at a certain point in the video.

• MTurk campaign (§5): The rendered videos are published

on the MTurk platform and we specify how many par-
ticipants (MTurkers) to recruit for this campaign. When

an MTurker signs up, they start a survey that asks them to

watch K rendered videos and, after each video, rate its QoE.

• QoE modeling (§4.2): Finally, we use the MOS of each

rendered video as its QoE and use regression to derive the

per-chunk weights, which are then incorporated into an

existing QoE model to derive the QoE model for this video.

4.2 Cutting cost via chunk-level reweighting
While crowdsourcing scales QoE profiling elastically, profil-

ing each video can still be prohibitively expensive. Since a

QoE model must capture the impact of both quality incidents

and the quality sensitivity of each chunk, a strawman solution

would build a QoE model with O(N ·P) parameters, where N
is the number of chunks and P is the number of parameters

in a traditional QoE model. This could require a prohibitive

number of ratings to build (e.g., KSQI has tens of parameters).

Encoding quality sensitivity with per-chunk weights: We



e.g.

Figure 9: A running example of the crowdsoucring scheduler
for a source video with 3 chunks, 2 bitrate levels (high and
low), 2 rebuffering event levels (0 and 1 second).

leverage the insight that quality sensitivity at a chunk is in-

herent to its video content (§2.2). Thus, SENSEI assigns a

single weight to each chunk irrespective of the quality in-

cident, reducing the number of model parameters to O(N).
Then, SENSEI reuses an existing QoE model but reweights
the chunks by their quality sensitivity. If the QoE model is

additive, e.g., the overall QoE is the sum of the QoE estimates

of individual chunks qi, or Q = ∑N
i=1 qi, then SENSEI can di-

rectly reweight the chunks by their quality sensitivity. Though

some QoE models are non-additive (e.g., LSTM-QoE), many

mainstream QoE models including KSQI and others [56, 85]

are. For KSQI, the qi take into account the impact of visual

quality, rebuffering, and quality switches. SENSEI reweights

the QoE model as follows:

Q = ∑N
i=1

wiqi, (1)

where wi is the weight of the ith chunk, reflecting how much

more sensitive users are to quality incidents in this chunk than

in other chunks.

Weight inference: Given any V rendered videos, if Q j is the

QoE (MOS) of the jth rendered video and qi, j is the estimated

QoE of the ith chunk of the jth rendered video, then we can

write V equations, Q j = ∑N
i=1 wiqi, j for j = 1, . . . ,V . We can

then infer the wi using a linear regression.

In the remainder of the paper, we assume that KSQI

reweighted by Equation 1 is the QoE model of SENSEI.

4.3 Crowdsourcing scheduler
We now turn our attention to compiling a small set of rendered

videos that, after being rated, will produce enough data to

reliably estimate the per-chunk weights.

Two-step scheduling: Given a source video, SENSEI’s sched-

uler uses a two-step process to decide which rendered videos

to publish and how many participants to elicit ratings from.

• First, SENSEI creates a set of N rendered videos, each with

a single 1-second rebuffering event at a different chunk

(recall N is the number of chunks). It then publishes these

videos and asks M1 participants to rate each video. The total

rendered video duration is O(N ·M1). Once the videos are

rated, we infer the per-chunk weights as described above.

• Second, we pick N′ � N chunks whose inferred weights

are α-high or low (e.g., 6 % higher or lower than the average

weight). We then repeat the first step with two differences:

(1) low-quality incidents are added only to these chunks,

and (2) the quality incidents include B bitrates (below the

highest bitrate) and F rebuffering events (1,2,. . . seconds).

We publish the rendered videos and ask M2 participants to

rate them, for a total video duration of O(N′ ·B ·F ·M2).

The purpose of the first step is to use a small number of

participants (M1) to get a noisy but indicative estimate of

which chunks have quality sensitivity that is very high or low,

so we can focus the second iteration on these chunks using

a larger number of participants (M2). In general, for an ABR

algorithm to improve QoE-bandwidth tradeoffs, it is more

important to identify which chunks have very high/low quality

sensitivity than to precisely estimate the quality sensitivity

of every chunk. §5 discusses the number of participants; we

evaluate the effect of α,B and F in §7.4. These parameters are

empirically selected and held constant throughout our tests.

Figure 9 shows an example two-step schedule for a source

video. In the first step, we generate a series of rendered video

with the same rebuffering event injected at different chunks.

By examining the ratings of these videos from the MTurkers,

we determine that chunks 2 and 3 have similar sensitivity to

the rebuffering event, allowing them to share the same chunk-

level weight. Thus, in the second step, we only need to enu-

merate the quality incidents for chunks 1 and 2. In practice,

for a 20-second video, we generate 5 rendered videos in the

first step for the N = 4 chunks, of which N′ = 2 chunks may

have high/low sensitivity, and generate 15 rendered videos in

the second step for these chunks.

Quality incidents used in profiling: For the set of B bitrates,

we use the bitrate levels of YouTube videos and pick three

of them to cover high, medium and low visual quality; we

found this to be a practical compromise. The set of rebuffering

events F are chosen to match those we plan to proactively add

to the video (see §6). Testing on a larger set of quality inci-

dents would yield more data points, but our microbenchmark-

ing results in §7.4 show that this only marginally improves

model accuracy, while significantly increasing the cost.

5 Reliable QoE Crowdsourcing
SENSEI’s QoE model crucially depends on the reliability of

MTurkers’ quality ratings. This section describes our user

survey procedure and techniques for increasing reliability.

While SENSEI mostly follows known practices [41, 43, 57],

we provide some key details that arose from our experience

(described below and in Appendix B).

Single-survey procedure: As shown in Figure 21, each sur-

vey starts with the instructions and rejection criteria under

which the ratings will be rejected. The MTurker then watches

an example video that includes a quality incident, so they

know what their ratings should be based on. Then the MTurker

is asked to watch a sequence of rendered videos (determined

by the scheduler) and, after each video, rate its quality on a

scale of 1-5. Finally, the MTurker does an exit survey.



Quality control per survey: Several measures are taken to

prevent and filter out spurious user ratings. First, we show

the test videos in a randomized order to each MTurker. This

eliminates biases due to viewing order and which videos were

previously watched. Second, we add reliability checks: we

show a video without any quality incident at a random position

among the test videos, and if an MTurker does not give the

highest score to this video, we discard all of their ratings. We

also ask the MTurker what quality incident(s) they just saw

in the last video, and if they report more quality incidents

than were included, that rating is discarded. This may occur

if the MTurker’s network connection is poor and new quality

incidents are introduced. Third, we implement an engagement

test to verify if the MTurker watched the video in its entirety,

by monitoring the time spent on the video playback page

and discarding the rating if the time is shorter than the video

length. We also implement other filters, such as limiting the

number or length of videos per MTurker to prevent fatigue.

Use of Master MTurkers: We follow a common practice

(e.g., [53]) and restrict our tests to Master MTurkers, a class of

reliable MTurkers who have participated in over 1000 surveys

and whose feedback was accepted for over 99% of their prior

surveys. We find that our rejection rate from Master MTurk-

ers is over 4× lower than normal MTurkers. One lesson we

learned is that Master MTurkers are more willing to partici-

pate if the publisher (us) historically has a low rejection rate

because they wish to maintain their rejection rate below 1%.

Sanity check of our dataset: To check if MTurker ratings

are similar to prior lab studies [41, 77], we select three 12-

second videos from a public dataset [31] whose quality ratings

are collected in a lab environment, and obtain MTurker ratings

for these videos. We find that the MTurker responses are

similar to the in-lab study: after normalizing the ratings to the

same range, the MTurkers’ MOS differs by less than 3% from

the in-lab study’s MOS on the same video.

How many MTurkers are needed? We did a head-to-head

comparison with WaterlooSQOE-III [31] and found that we

need 17% more MTurkers to reduce the variance of QoE

ratings down to the levels of the in-lab study. §7.4 shows how

the number of MTurkers affects SENSEI’s performance.

Despite the above, we acknowledge that our MTurk survey

methodology could be susceptible to human factors.

6 SENSEI’s ABR Logic
The key difference between SENSEI’s ABR logic and tradi-

tional ABR logic is that SENSEI aligns quality adaptation

with the temporal variability of quality sensitivity. We first

show how SENSEI modifies a traditional ABR framework

(§6.1), and then show how existing ABR algorithms can be

minimally modified to benefit from SENSEI (§6.2).

6.1 Enabling new adaptation actions
SENSEI takes a pragmatic approach by working within the

framework of existing players. It proposes specific changes

Figure 10: ABR framework of SENSEI. The differences with
traditional ABR framework are highlighted.

(a) Traditional bitrate selection (b) Sensei bitrate selection

(c) Traditional rebuffering (d) Sensei rebuffering

Figure 11: Illustrative examples of SENSEI vs traditional ABR
logic: how SENSEI improves quality (a vs. b) or avoids bad
quality (c vs. d) for high-sensitivity chunks.

to their input and output, as highlighted in Figure 10.

Input: Besides the current buffer length, next chunk sizes,

and history of throughput measurements, SENSEI’s ABR al-

gorithm takes as input the sensitivity weights of the next h
chunks, where h is the lookahead horizon. A larger h allows

us to look farther into the future for opportunities to trade

current quality for future quality, or vice versa. In practice, we

are also constrained by the reliability of our bandwidth pre-

diction for future chunks. We microbenchmark the selection

of h in §7.5.

Output: SENSEI’s ABR algorithm selects the bitrate for

future chunks as well as when the next rebuffering event

should occur.6 In contrast, traditional players only initiate

rebuffering events when the buffer is empty.

QoE model objective: If the ABR algorithm explicitly op-

timizes an additive QoE model, SENSEI can modify its ob-

jective as described in §4.2. While SENSEI can be applied to

most ABR algorithms (e.g., [56, 83, 85]), some (e.g., BBA)

do not have an explicit objective that SENSEI can build on.

In theory, these changes are sufficient to enable at least the

following optimizations, which traditional ABR algorithms

are unlikely to explicitly do. (1) Lowering the current bitrate

so that it can raise the bitrate for the next few chunks, if they

have higher quality sensitivity (Figures 11(a) and (b)). (2)

Raising the current bitrate slightly over the sustainable level

if quality sensitivity is expected to decrease in the next few

chunks. (3) Initiating a short rebuffering event now in order

to ensure smoother playback for the next few chunks, if they

have higher quality sensitivity (Figures 11(c) and (d)).

6SENSEI currently makes adaptation decisions only for the next chunk,

but in principle it could plan adaptations for multiple chunks in the future.



6.2 Refactoring current ABR algorithms
We apply SENSEI to two ABR algorithms: Pensieve [56],

based on deep reinforcement learning, and Fugu [83], a more

traditional algorithm based on bandwidth prediction.

Applying SENSEI to Pensieve: SENSEI leverages the flex-

ibility of deep neural networks (DNNs) and augments Pen-

sieve’s input, output and QoE objective—its states, actions,

and reward, in the terminology of reinforcement learning—

as described in §6.1. It then retrains the DNN model in the

same way as Pensieve; we call this variation SENSEI-Pensieve.

SENSEI-Pensive makes two minor changes to reduce the ac-

tion space (which now includes rebuffering). First, we restrict

possible rebuffering times to three levels ({0,1,2} seconds)

that can only happen at chunk boundaries. Second, instead

of choosing among combinations of bitrates and rebuffer-

ing, SENSEI-Pensieve either selects a bitrate or initiates a

rebuffering event at the next chunk. If it chooses the latter,

SENSEI-Pensieve will increment the buffer state by the chosen

rebuffering time and rerun the ABR algorithm immediately.

Applying SENSEI to Fugu: Let us first explain how Fugu

works. At a high level, before downloading the ith chunk, Fugu

considers the throughput prediction for the next h chunks.

For any throughput variation γ (with predicted probability

p(γ)) and bitrate selection B = (bi, . . . ,bi+h−1), where b j is

the bitrate of the jth chunk, it simulates when each of the

next h chunks will be downloaded and estimates the rebuffer-

ing time t j(B,γ) of the jth chunk (which could be zero). It

then picks the bitrate vector (bi, . . . ,bi+h−1) that maximizes

the expected total quality over the next h chunks and possi-

ble throughput variations: ∑γ p(γ)∑i+h−1
j=i q(b j, t j(B,γ)). Here,

q(b, t) estimates the quality of a chunk with bitrate b and re-

buffering time t using a simplified model of KSQI.

The SENSEI variation of Fugu, which we call SENSEI-

Fugu, uses Fugu’s throughput prediction and the sensitivity

weights w j of the next h chunks. SENSEI-Fugu picks the

bitrate vector B = (bi, . . . ,bi+h−1) and the rebuffering time

vector T = (ti, . . . , ti+h−1), where t j is the rebuffering time of

the jth chunk, that maximizes the expected total quality over

the next h chunks and possible throughput variations:

∑
γ

p(γ)
i+h−1

∑
j=i

w jq(b j, t j) (2)

Here, the chosen rebuffering times must be feasible, i.e., the

buffer length can never be negative.

In short, SENSEI-Pensieve and SENSEI-Fugu add an extra

action (rebuffering time per chunk), and their objective func-

tion reweights the contribution of each chunk’s quality using

the sensitivity weights provided by our QoE model.

6.3 Player implementation and integration
We implement SENSEI on DASH.js [3], an open-source player

that several commercial players are based on. We add a new

field in the DASH manifest file (under Representation) to

represent per-chunk sensitivity weights and change the parser

ManifestLoader to parse these weights. Unlike other ABR

players, SENSEI may initiate rebuffering when the buffer is

not empty. We use Media Source Extensions [7] (an API that

allows browsers to change player states) to delay a down-

loaded chunk in the browser buffer from being loaded into

the player buffer. We also describe the implementation of our

crowdsourcing pipeline for MTurk surveys in Appendix C.

7 Evaluation
Our evaluation of SENSEI shows several key findings:

• Compared to recent proposals, SENSEI can improve QoE

by 7.7-52.5% without using more bandwidth or can save

12.1-50.3% bandwidth while achieving the same QoE.

• The performance gains of SENSEI come at a cost of

$31.4/minute video, which is marginal compared to the

investments made by content providers.

• SENSEI can improve QoE prediction accuracy by 11.8-

37.1% over state-of-the-art QoE models.

• SENSEI’s ABR algorithm consistently outperforms baseline

ABR algorithms even when bandwidth fluctuates.

7.1 Experimental setup
Test videos and throughput traces: Our test videos are se-

lected from four datasets: LIVE-MOBILE [36], LIVE-NFLX-

II [21], and WaterlooSQOE-III [31] are professional-grade

datasets often used to train/compare QoE models in the lit-

erature. We complement these sources with videos from a

user-generated dataset, YouTube-UGC [78]. The videos are

randomly selected from four video genres: sports, gaming,

nature, and animation. Appendix §A provides more details

about the videos. To create an adaptive video streaming setup,

we chop videos into 4-second chunks and encode each chunk

at 5 bitrate levels: {300,750,1200,1850,2850}Kbps. We ran-

domly select 10 throughput traces from two public datasets,

FCC [24] and 3G/HSDPA [65], restricting our selection to

those whose average throughput is between 0.2Mbps and

6Mbps, forcing the ABR algorithms to adapt their bitrates.

Baselines: We compare SENSEI’s ABR algorithm with three

baselines: Buffer-based adaptation (BBA) [45], Fugu [83],

and Pensieve [56]. We keep their default settings (e.g., same

DNN architecture and training network traces for Pensieve,

etc.). For fairness, we use KSQI as the QoE model for

Pensieve, Fugu, and the SENSEI variants. This modification

should improve the quality of Pensieve and Fugu, because

the QoE models used in their original implementations are

special cases of KSQI. We use SENSEI-Pensieve (i.e., the ap-

plication of SENSEI to Pensieve) as SENSEI, but confirm that

the improvements of SENSEI-Fugu are similar (Figure 18a).

Performance metrics: We use three performance metrics.

For a given source and video and throughput trace, we report

the QoE gain of one ABR algorithm (Q1) over another (Q2),

i.e., (Q1 −Q2)/Q2, where Q1 and Q2 are rated by MTurkers.
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Figure 12: End-to-end performance of SENSEI over traditional and saliency-based ABR baselines, across all videos.

We calculate SENSEI’s bandwidth saving by scaling down

the throughput traces and determining how much bandwidth

each ABR algorithm needs to achieve the same QoE. We

normalize all QoE values to the range [0,1]. We measure the

crowdsourcing cost paid to MTurk to get enough ratings to

profile a 1-minute video. Only SENSEI incurs this cost.

7.2 End-to-end improvement
QoE gains: Figure 12a shows the distributions of QoE gains

of SENSEI, Pensieve, and Fugu over BBA, across all combi-

nations of the 16 source videos and 10 network traces. Com-

pared to BBA, SENSEI has at least 14.4% QoE gain for half of

the trace-video combinations, whereas Pensieve’s and Fugu’s

median QoE gains are about 5.7%. The tail improvement of

SENSEI is greater: SENSEI’s QoE gain at the 80th percentile

is 4.8%, whereas Pensieve’s and Fugu’s are 0.2% and 0.7%

respectively. The fact that SENSEI’s gains over Pensieve (its

base ABR logic) are similar to Pensieve’s gains over BBA

suggests the significant potential in making an existing ABR

algorithm aware of dynamic quality sensitivity.

Bandwidth savings: Figure 12b shows the average QoE of

different ABR algorithms across the source videos, under one

throughput trace scaled down by different ratios (x-axis). We

confirm the results are consistent across different throughput

traces. We see that when setting a target QoE of 0.8, the

bandwidth savings of SENSEI is about 27% higher compared

to Pensieve and Fugu, and 32% higher compared to BBA.

QoE vs. crowdsourcing cost: Figure 12c shows the crowd-

sourcing cost and resulting QoE of SENSEI relative to Pen-

sieve, both with and without the cost-pruning optimization

(which is evaluated separately in Figure 16). Compared to

enumerating all combinations of the quality incidents, we see

that costs can be reduced by more than 32× with only a 3.1%

degradation in QoE, and SENSEI is still 14.7% better on av-

erage than its base ABR logic (Pensieve with KSQI). This

cost is equivalent to ∼$31.4 per 1-minute video, which is a

negligible cost for large content providers that may spend on

the order of $10 billion annually [4] for licensing popular TV

shows (or making such shows).

Improvements by video and trace: Figure 13a shows the

QoE gains for each video across the network traces. We see

significant variability in the QoE gains across videos and

even within the same genre. Figure 13b shows the QoE gains
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Figure 13: QoE gains over BBA for genre and for each
throughput trace (ordered by increasing average throughput)

for each network trace across all videos. Overall, SENSEI

yields more improvement when the average throughput is

lower (towards the left). This shows that SENSEI can better

maintain high QoE even when the network is under stress.

SENSEI vs. saliency-reweighted ABR: Finally, Figure 12d

shows the QoE gains of SENSEI when the per-chunk weights

are based on crowdsourcing results (our approach) and when

the weights are based on the saliency scores produced by var-

ious saliency models (see §2.3). We normalize each model’s

saliency scores to sum to the sum of chunk weights of SENSEI.

We see that SENSEI’s gain significantly reduces if the weights

are based on these saliency models, because as explained in

§2.3, they fail to capture users’ quality sensitivity.

7.3 QoE prediction accuracy
We now microbenchmark SENSEI’s QoE model introduced

in §4 using all 640 rendered videos generated by running

SENSEI and the baseline ABR algorithms on all combina-

tions of source videos and network traces. We obtain the

“ground truth” QoE of each rendered video using our MTurk

survey procedure (§4,§5). We calculate Pearson’s linear cor-

relation coefficient (PLCC) and Spearman’s rank correlation

coefficient (PRCC) between the predicted QoE and actual

user-rated QoE. Figure 14 compares SENSEI with three base-

lines QoE models (KSQI, LSTM-QoE, P.1203). The PLCC

(and PRCC) of SENSEI’s QoE prediction is over 0.85 (and

0.84), whereas the baselines are below 0.76 (and 0.73). We

evaluated several variants of KSQI (the best baseline QoE

model) re-weighted by per-chunk saliency scores from the

saliency models in §2.3, but their accuracies are even lower.

7.4 Cost savings on crowdsourcing



Figure 14: QoE prediction accuracy of SENSEI, SENSEI’s
variants, and baseline QoE models.

Figure 15: The effect of the number of raters

We microbenchmark the effects of different crowdsourcing

parameters on SENSEI’s QoE model.

Impact of number of raters per video: Figure 15(a) shows

that while the quality ratings have substantial variance with

less than 5 raters, their mean value (MOS) stabilizes with

more than 15 raters. As a result, having 15 raters per video (as

used in SENSEI) produces a similar QoE prediction accuracy

(b) and QoE gains (c) as having 30 raters.

Impact of crowdsourcing schedule granularity: Figure 16

shows the effect of reducing MTurk cost by considering (a)

fewer bitrate levels (B), (b) fewer rebuffering events (F), or (c)

higher threshold α used to pick which chunks to investigate in

the second step. These terms are defined in §4.3. By reducing

B to 3, F to 2, or raising α to 6%, we greatly reduce the cost

while incurring less than 3% drop in accuracy.

7.5 SENSEI’s ABR logic
Finally, we microbenchmark SENSEI’s ABR logic (§6). To

scale this experiment out, we use real videos and throughput

traces but use the QoE predicted by SENSEI (instead of real

user ratings) to evaluate QoE. We have confirmed that this

yields the same QoE estimates on average as real user ratings

under the same setting.

Impact of bandwidth variance: Figure 17 shows the per-

formance of SENSEI under increasing throughput variance.

We pick one throughput trace and increase its throughput vari-

ance by adding unbiased Gaussian noise. The graph begins

at the variance of the original throughput trace; as variance

increases, SENSEI’s QoE degrades gracefully, but it still main-

tains a significant gain over its base ABR logic (Pensieve or

Fugu). This is because SENSEI only needs to predict how

likely low throughput will occur on high quality-sensitivity

chunks, not all future chunks, so if the average throughput

until the next such chunk is predictable, it will work well. We

Figure 16: QoE model accuracy changes with cost.
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Figure 17: QoE under increasing bandwidth variance.

confirm the results are similar on other throughput traces.

Performance breakdown: Figure 18a shows that SENSEI

achieves comparable improvement when either Pensieve or

Fugu is the base ABR logic. This suggests that SENSEI’s

gains do not depend on the choice of the base ABR logic.

Figure 18b shows that both aspects of SENSEI’s control logic

contributes to its improvements: (1) making ABR logic aware

of dynamic quality sensitivity (1st vs. 2nd bar), and (2) inject-

ing rebuffering judiciously (2nd vs. 3rd bar). Thus, even if a

content provider cannot control rebuffering, it can still benefit

significantly from SENSEI’s dynamic quality sensitivity.

Impact of video contents: While the videos in our dataset

have varying fractions (from 20% to 60%) of high-sensitivity

chunks, Figure 18c tests Sensei’s performance under an even

wider range of high-sensitivity chunk fractions (from 0% to

100%). We create source videos with the specific fractions of

high and low quality-sensitivity chunks and randomize the

positions of the chunks. SENSEI has marginal improvement

when the video is dominated by either high or low quality-

sensitivity chunks. However, SENSEI significantly improves

QoE when high quality-sensitivity chunks are 20-40% of a

video (most of our videos fall in this range).

Lookahead horizon: Figure 18d tests the impact of looka-

head horizon—the number of future chunks h whose quality-

sensitivity weights are revealed to the ABR algorithm. A

longer horizon increases SENSEI’s ability to schedule qual-

ity events between low and high quality-sensitivity chunks.

Empirically in our dataset, the QoE gains diminish after the

lookahead horizon is greater than 4 chunks.

Systems overhead: We confirm empirically that compared

to a video player without SENSEI, the runtime overhead of

SENSEI is less than 1% in both CPU cycles and RAM usage.

8 Related Work
ABR algorithms: Mainstream ABR algorithms maximize

bitrate under dynamic available bandwidth. Traditional ones

are buffer-based (e.g., [46, 50]) or rate-based algorithms

(e.g., [45, 69, 70]). Recent ABR algorithms explicitly opti-

mize a given QoE objective via control theory [85], ML-based
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Figure 18: Understanding SENSEI’s improvements.

throughput prediction [73, 83], or deep reinforcement learn-

ing [34, 35, 56]. Some ABR algorithms also rely on server-

side processing [17,47,84]. Key parameters of the ABR logic

can be customized to the network conditions or devices [16].

Though SENSEI reuses existing ABR algorithms, its contri-

bution lies in identifying minimum changes (e.g., adaptation

actions they never would have taken) needed for these algo-

rithms to fully leverage users’ dynamic quality sensitivity.

Modeling and optimizing user-perceived quality: Visual

quality assessment (VQA) traditionally models user’s percep-

tion of encoded video using pixel-level patterns (e.g., [38,

64, 68, 79]) as well as advanced data-driven models, such

as SVM [11] and deep learning models (e.g., [48]). Adap-

tive quality assessment (AQA), on the other hand, mod-

els streaming-related incidents, including join time, bitrate

switches, rebuffering (e.g., [18, 28, 49]). Recent QoE mod-

els combine VQA and AQA (e.g., [19, 20, 22, 25, 29, 31, 33])

and sometimes uses spatial/temporal visual attention (e.g.,
[30, 34, 34, 37, 59, 60, 82]). These perception-centric QoE

models have inspired a large body of work that maximizes

user-perceived quality with bitrate adaptation [58, 61], adap-

tive video encoding [17,67,89], adaptive bitrate levels [14,15],

dynamic chunk lengths [51], and super resolution [47, 84, 88].

Since the user-perceived quality metrics can vary across

chunks, they may also treat video chunks differently, like

SENSEI does. However, as elaborated in §2.3, SENSEI is com-

plementary to these efforts: while they propose heuristics to

how pixel-/motion-based visual features affect QoE, SENSEI

customizes itself for each video (in a cost-efficient way) to

capture the impact of the substance of video content on true

user sensitivity to video quality. That said, actions like dy-

namic bitrate levels, chunk lengths, and super resolution could

be used in SENSEI too, though SENSEI only considers actions

directly supported by current DASH players.

QoE research using crowdsourcing: Prior work (e.g., [23,

42, 43, 57, 62, 81]) provides methodologies for using com-

mercial crowdsourcing platforms, e.g., Amazon MTurk [1]

and Microworkers [8], to systematically model user percep-

tion using objective quality metrics [23, 42, 43, 62, 81], inves-

tigate QoE impact of different types of low-quality events

(e.g., [32]), and build crowdsourcing platforms themselves

for similar purposes (e.g., [77, 83]). While SENSEI follows

conventional crowdsourcing methodology (§5), SENSEI faces

a unique challenge of scaling crowdsourcing to per-video
QoE modeling. The cost of modeling QoE of each video

separately is prohibitive, and SENSEI drastically prunes the

cost by reusing an existing QoE model while profiling only a

single weight per representative chunk to encode the content-

induced quality sensitivity of each chunk.

9 Discussion

Participant selection bias: A concern of any crowdsourced

user study is that the results could be biased because the work-

ers who are willing to participate in the user study might

have different characteristics than the real video viewers. A

common approach to address this bias is to reweight the par-

ticipant responses based on the demographics of real users

(e.g., [26, 55, 71, 76]). SENSEI could apply reweighting to the

user study if we have knowledge of the target viewers’ demo-

graphics, or it could directly recruit the user study participants

from the target viewers themselves (e.g., subscribers of the

content provider).

Inapplicable scenarios: SENSEI does not apply to live video

streaming and copyrighted videos. Live videos have strict de-

lay requirements which our crowdsourcing-based video profil-

ing cannot meet. Showing copyrighted videos to crowdsource

workers poses the risk of copyright violation, though SENSEI

could be used on already-released videos. Moreover, the pro-

filing cost of ∼ $31.4/minute video may still be impractical

for videos with only a few views. Instead, we envision that

SENSEI will be used for popular on-demand video by content

providers who seek to improve their QoE-bandwidth trade-

offs. For example, providers such as Amazon, Netflix and

YouTube recently lowered the default bitrate in Europe due

to increased network traffic during the COVID lockdown [9].

10 Conclusion
We have described SENSEI, a video streaming system that

optimizes video quality by exploiting dynamic quality sensi-

tivity. Observing that quality sensitivity is inherent to video

content and hence unique to each video, SENSEI scales out

the profiling of quality sensitivity using a reliable crowdsourc-

ing methodology. We show that with minor modifications to

state-of-the-art ABR algorithms, SENSEI can improve their

QoE by 15.1% or save bandwidth by 26.8% on average.
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A Dataset
Figure 19 provides screenshots and descriptions of the 16

source videos used in our dataset. Table 1 summarizes the test

videos.

B Reliable QoE Crowdsourcing
We provide a few additional details on our crowdsourcing

methodology.

Population bias of MTurk: As mentioned in §9, the per-

chunk quality sensitivity could be biased by the population

Name Genre Length Source dataset
(a) Basket1 Sports 3:40 LIVE-MOBILE

(b) Soccer1 Sports 3:20 LIVE-NFLIX-II

(c) Basket2 Sports 3:40 YouTube-UGC

(d) Soccer2 Sports 3:40 YouTube-UGC

(e) Discus Sports 3:40 YouTube-UGC

(f) Wrestling Sports 3:40 YouTube-UGC

(g) Motor Sports 3:40 YouTube-UGC

(h) Tank Gaming 3:40 YouTube-UGC

(i) FPS1 Gaming 3:40 YouTube-UGC

(j) FPS2 Gaming 3:40 YouTube-UGC

(k) Mountain Nature 1:24 LIVE-MOBILE

(l) Animal Nature 3:40 YouTube-UGC

(m) Space Nature 3:40 YouTube-UGC

(o) Girl Animation 3:40 YouTube-UGC

(n) Lava Animation 3:40 LIVE-NFLIX-II

(p) BigBuckBunny Animation 9:56 WaterlooSQOE-III

Table 1: Summary of the test video set.

distribution of MTurkers. We confirm that about 43.8% (and

67.3%) of the received ratings come from MTurkers who

participate in our survey only once (at most twice). This sug-

gests that the pool of MTurkers is large enough to avoid small

population bias, which corroborates our sanity-check results

(§5) that on average MTurker quality ratings are strongly

correlated with in-lab survey results.

Fast MTurker recruitment: While the MTurk platform cuts

the overhead to publish our survey, if MTurkers sign up slowly,

this can slow down the entire process. We take following steps

to speedup the recruitment of MTurkers.

• Competitive compensation: We offer an hourly rate of $10,

a competitive compensation on the MTurk platform — only

4% MTurkers are paid more than $7.25/hour [40], though

we have not explored the impact of raising/lowering this

rate. To prevent people from gaming the system by sitting

on a job for too long, we pay each MTurker by the esti-

mated amount of time needed to finish a survey (which is

proportional to the total length of the videos per MTurker),

rather than by how much time the MTurker actually spends.

In practice, this only weeds out MTurkers who spend too

much time on a survey.

• Maintaining good reputation: The MTurkers’ signing-up

speed also depends largely on the reputation of the pub-

lisher (i.e., us), because MTurkers tend to sign up if the

publisher historically has a low rejection rate. Thus, it is

critical to be clear upfront about our study’s rejection cri-

teria. In the meantime, to keep our rejection rate low, we

try to target reliable MTurkers by restricting ourselves to

Master MTurkers (a common practice for publishers on

MTurk [53]).

C Implementation
Automation of MTurk tests: We implement the pipeline

shown in Figure 8 in Python (for the logic) and Javascript

(for the video server). Given a source video, it first creates the



Figure 19: Summary of source videos in our dataset. They span four genres: sports (a - g), gaming (h - j), natural (k - m), and

animation (n - p). They are compiled randomly from public QoE datasets: LIVE-MOBILE [36](a,k), LIVE-NFLX-II [21] (b, n),

YouTube-UGC [78] (c - j and l - o); and WaterlooSQOE-III [31] (p).
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Figure 20: Chunk weight difference

rendered videos by adding specific low-quality incidents in

the source video (via ffmpeg). It then uploads these videos

to a video server, from which MTurkers later download the

video. After that, it generates a unique link for this campaign

and posts it on the MTurk website (the only step that requires

manual intervention). MTurkers can join the test by clicking

the link, which redirects them to our video server. Once an

MTurker has rated all assigned videos, the server logs the

ratings and notifies us. Once enough ratings are received, the

server trains the per-chunk weights as described in §4.2.

Single survey procedure: As shown in Figure 21:

• (a) Each survey starts with the instructions and rejection

criteria under which ratings of an MTurker will be rejected.

Each MTurker is expected to read the instructions carefully.

• (b) The MTurker then watches an example video that in-

cludes a quality incident so that they know what their ratings

should be based on.

• (c, d) After that, the MTurker is asked to watch a sequence

of rendered videos (determined by the scheduler) and, after

each video, rate the quality on a scale of 1-5.

• (d) Finally, the MTurker does an exit survey.

D More discussion on saliency models
Saliency models used in §2.3: We test four models in total, a

traditional motion-based heuristic (AMVM [52]), a highlight

detection model (video2GIF [39]), and a video summarization

model (DSN [90], dppLSTM [87]). We used the pretrained

models of Video2GIF (https://github.com/gyglim/vi
deo2gif_code), DSN (https://github.com/KaiyangZh
ou/pytorch-vsumm-reinforce), and dppLSTM (https:
//github.com/kezhang-cs/Video-Summarization-wi
th-LSTM).

Saliency score vs. quality sensitivity: Although a variety

of saliency models have been proposed, we argue that these

visual heuristics can be misaligned with video quality sensi-

tivity. For example, in the soccer video (Figure 1), the scene



Figure 21: A diagram of our QoE survey interface. In each survey, an MTurker is asked to rate K rendered videos; after watching
each rendered video, an MTurker is asked to rate its quality on a scale of 1 (worst) to 5 (best).

right before the goal is most quality sensitive, but the highlight

detection models and motion-based heuristics we evaluated

believe the scenes showing the audience are the most impor-

tant (probably because they show more human movements).

Video summarization models pick all diverse moments of a

video, but many of them may not be quality-sensitive. For

example, in the same soccer video, the video summarization

models identify every shot, rewind, and celebration clip as

important, but the users pay more attention to shots that might

score a goal.

We also acknowledge the potential use of viewership in-

formation to detect video highlights. While the popularity of

a chunk is closely related to highlights (or high interesting-

ness scenes) in a video, as we found in §2.3 and §7.3, these

incidents may not perfectly align with users’ sensitivity to

video quality. Below are two examples specifically regarding

the potential misalignment between content popularity and

quality sensitivity.

• Example 1: A less popular part of a video can still be

quality-sensitive. The “animal” video in our dataset is a

part of a video about wildlife in Africa. Although a more

“popular” or “interesting” scenes is one where the lions

chase antelopes, we find that users are still highly quality-

sensitive in the scene where warthogs jump into a small

pond for bathing.

• Example 2: A quality-sensitive part of a video may be a

small fraction of a popular segment. One of the soccer

videos in our dataset is a compilation of highlight moments

from a long game, so all of its content is supposed to be

“popular”. However, we still see that there is heterogeneity

in the sensitivity of its chunks.


