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Stream processing—the processing of large volumes of live
data in real time—has been studied for decades [5]. How-
ever, recent years have seen an explosion in the number and
variety of devices producing data streams, from software logs
to handheld phones to aerial cameras, with an estimated 2.5
quintillion bytes of data created each day [1]. It is now
commonplace for related data streams to arise from diverse
sources in disparate locations, such as user posts in a social
media service like Twitter, or server logs in a content distri-
bution network (CDN) like Akamai. Traditional stream pro-
cessing systems are unsuitable in this context, since they are
designed either for single datacenter scenarios with a small
number of colocated nodes (e.g., [2,3]), or for sensor network
scenarios with highly constrained, homogeneous nodes with
minimal per-node resources (e.g., [7]).

In contrast, we focus on stream processing in a highly dis-
tributed, heterogeneous environment. The stream process-
ing system we are building, JetStream, is designed for Inter-
net services that operate at a global scale, spanning multiple
datacenters and involving nodes with diverse capacities and
connectivities. In such scenarios, planning and executing a
query over streaming data is challenging, because resources
like link bandwidth vary dramatically between and across
devices and datacenters. Whereas prior work on wide-area
stream processing often focused on tolerating faults through
replication (e.g., [6]), we believe novel techniques for query
optimization and placement are required for this new, wide-
area setting.

In our vision, users will have to give only a high-level
description of the query, perhaps as a dataflow graph of
operators. JetStream will track available network resources
and optimize the query plan to network conditions, assigning
operators from this new plan to specific nodes for execution.
This is similar to how a relational database compiles SQL
queries into concrete execution plans.

Whereas a conventional database picks a query plan in ad-
vance, we expect query plans to adapt over time, depending
on available computational and network resources. Further,
we intend to explore hierarchical control. Some high-level
decisions about placement may be made by a centralized
entity (e.g., which datacenter will be responsible for com-
puting a particular aggregate) while other decisions should
be delegated to increasingly localized controllers (e.g., which
servers within a datacenter are assigned which tasks). We
expect hierarchical system of control to work better in the
wide-area context, where a centralized controller might have
a stale view of conditions.

A wide range of techniques have been proposed for effi-
cient stream processing. Much of this work was in a single-
node or single-datacenter environment, where interconnect
bandwidth is plentiful. In the wide area, we expect networks

to be the major bottleneck and source of unreliability, and
therefore we think placement will be a dominating concern.
Below, we outline three techniques which we expect to be
especially valuable.

First, JetStream uses the semantic properties of opera-
tors to slide and split operators within the user’s query in
a manner than soundly preserves its results, in order to re-
duce bandwidth consumption, shift processing load, or load
balance computation. A simple example is pushing a filter
operator behind a monotonic operator: an operator ADD-c
that adds some constant c to each input datum, followed by
a filter LT-t that only allows items less than some threshold
t to pass through, is equivalent to LT-t followed by ADD-
c followed by LT-t. Such “pushback” transformations move
computation towards the stream sources, reducing the band-
width required. While such transformations have appeared
in previous work, we have also developed novel, composable
transformations that exploit the distributive property of ag-
gregate operators to split queries over multiple nodes and
datacenters, allowing for more even load distribution and
fan-in across the wide area.

Second, we can customize tree aggregation for our domain.
Aggregation trees have been explored for sensor networks
(e.g., [7]), but this work typically assumes that nodes have
minimal storage, operate in a broadcast medium, and need
to minimize the number of transmissions to preserve power.
These assumptions may not hold in the heterogeneous envi-
ronments we consider. Altering these assumptions allows us
to explore new tree formation, scheduling, and fault recovery
approaches.

Third, transformations that yield approximate query re-
sults may be necessary, particularly in cases for which se-
mantic transformations and partial aggregation do not suf-
ficiently reduce the resource costs of a query. Such trans-
formations include sampling the data stream or using an
approximate or “synopsis” data structure [4]. Ideally, the
system should allow the user to specify the desired tradeoff
between query error, resource consumption, and liveness,
automatically adjusting the query plan accordingly.

An approximation query might rely on an approximation
for old data as well as new data. Many streaming appli-
cations compare or “join” real-time data against historical
data or quantities. For example, a user watching a plot of
per-minute web traffic might wish to compare it with past
records, perhaps on a different time scale. To support these
operations efficiently, we are examining the in-network use of
approximation and summarization data structures (such as
aggregate-based, OLAP-style hypercubes). These would be
first-class parts of the system, visible to the query planner.

Approximation not only reduces bandwidth consumption,
it helps us handle faults, which are a fact of life in the wide
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Figure 1: A Top-k query example. The original query is shown above the optimized version of that query.

area. Our fault-tolerance philosophy is to avoid replicating
operators (and duplicating traffic) when possible, preferring
instead to leverage in-network storage (e.g., to temporarily
backup data) or return approximate results.

We conclude with an example. Figure 1 shows some of
these transformations in action for a query Q that computes
the k most popular domains being requested from a CDN’s
geographically-distributed servers. (The query operates on
windows of streaming data, but we mostly ignore this issue
for simplicity.) The input representation of Q is simple and
flexible: after taking the union of the streams, the frequency
of each domain is counted and the results are sorted and
limited to the k most popular.

JetStream can exploit the flexibility of the query’s opera-
tors to optimize for the given physical topology. In this ex-
ample, a source of streaming data may be an individual CDN
server or a logging server deployed at each PoP in which the
CDN operates. After performing local aggregation on the
frequency of its domains over a given window, each source is
directed to the nearest of two datacenters (DC1 or DC2) to
performs partial aggregation across multiple sources. Once
the streams enter DC1, they are again combined using a
partial count operator that simply performs a sum. This
merging further reduces the output bandwidth, which is de-
sirable since the output needs to traverse a wide-area link.

In this example, DC2 has lower-capacity nodes than DC1,
so it distributes the processing over two machines using
count’s group-by clause. Since the counts are grouped by
domain, we simply separate the streams alphabetically. We
distribute computation similarly in DC3, where distribution
also serves to prevent large fan-in to any single node.

Finally, DC3 partially sorts and limits the domains’ fre-
quencies on three separate servers (shown in dotted boxes)
before sending them to a fourth server to compute the final
top k results; this reduces the stream bandwidth entering
this ultimate server. This “pushback” of the limit operator
is possible because the operator that combines two sorted

and disjoint lists is monotonic in rank: items never move up
when the lists are merged.

We believe that the management and analysis of disparate
streaming data sources are ripe for innovation. Much as
database management systems did for business data and
MapReduce is doing for stored unstructured data, we seek
to allow users to analyze globally distributed data streams,
without hand optimizing the computation on that data.

1. REFERENCES
[1] Bringing big data to the enterprise.

http://www-01.ibm.com/software/data/bigdata/.

[2] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel,
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