Appeared in 7th USENIX Symposium on Network
Design and Implementation (NSDI ’10)

Prophecy: Using History for High-Throughput Fault Tolerance

Siddhartha Sen, Wyatt Lloyd, and Michael J. Freedman
Princeton University

Abstract

Byzantine fault-tolerant (BFT) replication has enjoyed a
series of performance improvements, but remains costly
due to its replicated work. We eliminate this cost for
read-mostly workloads through Prophecy, a system that
interposes itself between clients and any replicated ser-
vice. At Prophecy’s core is a trusted sketcher compo-
nent, designed to extend the semi-trusted load balancer
that mediates access to an Internet service. The sketcher
performs fast, load-balanced reads when results are his-
torically consistent, and slow, replicated reads otherwise.
Despite its simplicity, Prophecy provides a new form of
consistency called delay-once consistency. Along the
way, we derive a distributed variant of Prophecy that
achieves the same consistency but without any trusted
components.

A prototype implementation demonstrates Prophecy’s
high throughput compared to BFT systems. We also de-
scribe and evaluate Prophecy’s ability to scale-out to sup-
port large replica groups or multiple replica groups. As
Prophecy is most effective when state updates are rare,
we finally present a measurement study of popular web-
sites that demonstrates a large proportion of static data.

1 Introduction

Replication techniques are now the norm in large-scale
Internet services, in order to achieve both reliability and
scalability. However, leveraging active agreement to
mask failures, whether to handle fail-stop behavior [41,
50] or fully malicious (Byzantine) failures [42], is not
yet widely used. There is some movement in this direc-
tion from industry—such as Google’s Chubby [10] and
Yahoo!’s Zookeeper [66] coordination services, based on
Paxos [41]—but both are used to manage infrastructure,
not directly mask failures in customer-facing services.
And yet non-fail-stop failures in customer-facing ser-
vices continue to occur, much to the chagrin and concern
of system operators. Failures may arise from malicious
break-ins, but they also may occur simply from system
misconfigurations: Facebook leaking source code due to
one misconfigured server [60], or Flickr mixing up re-
turned images due to one improper cache server [24].
In fact, both of these examples could have been pre-
vented through redundancy and agreement, without re-

quiring full N-version programming [8]. The perceived
need for systems robust to Byzantine faults—a superset
of misconfigurations and Heisenbugs—has spurned al-
most a cottage industry on improving performance re-
sults of Byzantine fault tolerant (BFT) algorithms [1, 6,
12,17, 30, 37, 38, 56, 62, 64, 65, 67].

While the latency of recent BFT algorithms has
approached that of unreplicated reads to individual
servers [15, 38, 64], the throughput of such systems falls
far short. This is simple math: a minimum of four repli-
cas [12] (or sometimes even six [1]) are required to toler-
ate one faulty replica, and at least three must participate
in each operation. For datacenters in the (tens of) thou-
sands of servers, requiring four times as many servers
for the same throughput may be a non-starter. Even ser-
vices that already replicate their data, such as the Google
File System [25], would see their throughput drop signif-
icantly when using BFT agreement.

But if the replication cost of BFT is provably neces-
sary [9], something has to give. One might view our
work as a thought experiment that explores the potential
benefit of placing a small amount of trusted software or
hardware in front of a replicated service. After all, wide-
area client access to an Internet service is typically medi-
ated by some middlebox, which is then at least trusted to
provide access to the service. Further, a small and sim-
ple trusted component may be less vulnerable to prob-
lems such as misconfigurations or Heisenbugs. And by
treating the back-end service as an abstract entity that ex-
poses a limited interface, this simple device may be able
to interact with both complex and varied services. Our
implementation of such a device has less than 3000 lines
of code.

Barring such a solution, most system designers opt
either for cheaper techniques (to avoid the costs of
state machine replication) or more flexible techniques
(to ensure service availability under heavy failures or
partitions). The design philosophies of Amazon’s Dy-
namo [18], GFS [25], and other systems [20, 23, 61]
embrace this perspective, providing only eventually-
consistent storage. On the other hand, the tension be-
tween these competing goals persists, with some systems
in industry re-introducing stronger consistency proper-
ties. Examples include timeline consistency in Yahoo!’s
PNUTS [16] and per-user cache invalidation on Face-
book [21]. Nevertheless, we are unaware of any major

use of agreement at the front-tier of customer-facing ser-
vices. In this paper, we challenge the assumption that
the tradeoff between strong consistency and cost in these
services is fundamental.

This paper presents Prophecy, a system that lowers
the performance overhead of fault-tolerant agreement for
customer-facing Internet services, at the cost of slightly
weakening its consistency guarantees. At Prophecy’s
core is a trusted sketcher component that mediates client
access to a service replica group. The sketcher maintains
a compact history table of observed request/response
pairs; this history allows it to perform fast, load-balanced
reads when state transitions do not occur (that is, when
the current response is identical to that seen in the past)
and slow, replicated reads otherwise (when agreement
is required). The sketcher is a flexible abstraction that
can interface with any replica group, provided it exposes
a limited set of defined functionality. This paper, how-
ever, largely discusses Prophecy’s use with BFT replica
groups. Our contributions include the following:

e When used with BFT replica groups that guaran-
tee linearizability [32], Prophecy significantly in-
creases throughput through its use of fast, load-
balanced reads. However, it relaxes the consistency
properties to what we term delay-once semantics.

* We also derive a distributed variant of Prophecy,
called D-Prophecy, that similarly improves the
throughput of traditional fault-tolerant systems. D-
Prophecy achieves the same delay-once consistency
but without any trusted components.

* We introduce the notion of delay-once consistency
and define it formally. Intuitively, it implies that
faulty nodes can at worst return only stale (not arbi-
trary) data.

* We demonstrate how to scale-out Prophecy to sup-
port large replica groups or many replica groups.

¢ We implement Prophecy and apply it to BFT replica
groups. We evaluate its performance on realistic
workloads, not just null workloads as typically done
in the literature. Prophecy adds negligible latency
compared to standard load balancing, while it pro-
vides an almost linear-fold increase in throughput.

* Prophecy is most effective in read-mostly work-
loads where state transitions are rare. We conduct
a measurement study of the Alexa top-25 websites
and show that over 90% of requests are for mostly
static data. We also characterize the dynamism in
the data.

Table 1 summarizes the different properties of a tra-
ditional BFT system, D-Prophecy, and Prophecy. The
remainder of this paper is organized as follows. In §2 we

Property BFT D-Prophecy Prophecy
Trusted components No No Yes
Modified clients Yes Yes No
Session length Long Long Short, long
Load-balanced reads No Yes Yes
Consistency Linearized | Delay-once | Delay-once

Table 1: Comparison of a traditional BFT system, D-

Prophecy, and Prophecy.

motivate the design of D-Prophecy and Prophecy, and we
describe this design in §3. In §4 we define delay-once
consistency and analyze Prophecy’s implementation of
this consistency model. In §5 we discuss extensions to
the basic system model that consider scale and complex
component topologies. We detail our prototype imple-
mentation in §6 and describe our system evaluation in
§7. In §8 we present our measurement study. We review
related work in §9 and conclude in §10.

2 Motivating Prophecy’s Design

One might rightfully ask whether Prophecy makes un-
fair claims, given that it achieves performance and scal-
ability gains at the cost of additional trust assumptions
compared to traditional fault-tolerant systems. This sec-
tion motivates our design through the lens of BFT sys-
tems, in two steps. First, we improve the performance
of BFT systems on realistic workloads by introducing a
cache at each replica server. By optimizing the use of this
cache, we derive a distributed variant of Prophecy that
does not rely on any trusted components. Then, we ap-
ply this design to customer-facing Internet services, and
show that the constraints of these services are best met
by a shared, trusted cache that proxies client access to the
service replica group. The resulting system is Prophecy.

In our discussion, we differentiate between write re-
quests, or those that modify service state, and read re-
quests, or those that simply access state.

2.1 Traditional BFT Services
Workloads

A common pitfall of BFT systems is that they are eval-
uated on null workloads. Not only are these workloads
unrealistic, but they also misrepresent the performance
overheads of the system. Our evaluation in §7 shows that
the cost of executing a non-null read request in the PBFT
system [12] dominates the cost of agreeing on the order-
ing of the request, even when the request is served en-
tirely from main memory. Thus the PBFT read optimiza-
tion, which optimistically avoids agreement on read re-
quests, offers little or no benefit for most realistic work-
loads. Improving the performance of read requests re-
quires optimizing the execution of the reads themselves.

and Real

Unlike write requests, which modify service state and
hence must be executed at each replica server, read re-
quests can benefit from causality tracking. For example,
if there are no causally-dependent writes between two
identical reads, a replica server could simply cache the
response of the first read and avoid the second read al-
together.! However, this requires (1) knowledge of the
causal dependencies of all write requests, and (2) a re-
sponse cache of all prior reads at each replica server. The
first requirement is unrealistic for many applications: a
single write may modify the service state in complex
ways. Even if we address this problem by invalidating
the entire response cache upon receiving any write, the
space needed by such a cache could be prohibitive: a
cache of Facebook’s 60+ billion images on April 30,
2009 [49], assuming a scant 1% working-set size, would
occupy approximately 15TB of memory. Thus, the sec-
ond requirement is also unrealistic.

Instead of caching each response r, the replica servers
can store a compact, collision-resistant sketch s(r) to en-
able cache validation. That is, when a client issues a read
request for r, only one replica server executes the read
and replies with r, while the remaining replica servers
reply with s(r) from their caches. The client accepts r
only if the replica group agrees on s(r) and if s(r) vali-
dates r. Thus, even if the replica that returns r is faulty, it
cannot make the client accept arbitrary data; in the worst
case, it causes the client to accept a stale version of r.
Therefore we only need to ask one replica to execute the
read, effectively implementing what we call a fast read.
Fast reads drastically improve the throughput of read re-
quests and can be load-balanced across the replica group
to avoid repeated stale results. The replica servers main-
tain a fresh cache by updating it during regular (repli-
cated) reads, which are issued when fast reads fail. Us-
ing a compact cache reduces the memory footprint of the
Facebook image working set to less than 27GB.

We call the resulting system Distributed Prophecy, or
D-Prophecy, and call the consistency semantics it pro-
vides delay-once consistency.

2.2 BFT Internet Services

An oft-overlooked issue with BFT systems, including D-
Prophecy, is that they are implicitly designed for services
with long-running sessions between clients and replica
servers (or at least always presented and evaluated as
such). Clients establish symmetric session keys with
each replica server, although the overhead of doing so
is not typically included when calculating system perfor-
mance. Figure 1 shows the throughput of the PBFT im-

Other causality-based optimizations, such as client-side specula-
tion [64] or server-side concurrent execution [37] are also possible, but
are complementary to any cache-based optimizations.

64 | PBFT-ro —+—
32 |

Throughput (Kregs/s)

= N b~
T

1 1 1 1 1 1 1
1 4 16 64 256 1024 4096
Session Length

Figure 1: PBFT’s throughput in the thousands of requests
per second for null requests in sessions of varying length.
Note that both axes are log scale.

plementation as a function of session length, with all rel-
evant optimizations enabled including the read optimiza-
tion (indicated by ‘ro’). As sessions get shorter, through-
put is drastically reduced because replicas need to de-
crypt and verify clients’ new session keys. For PBFT
sessions consisting of 128 read requests, throughput is
half of its maximum, and for sessions consisting of 8 read
requests, throughput is one-tenth of its maximum.

The assumption of long-lived sessions breaks down
for Internet services, however, which are mostly char-
acterized by short-lived sessions and unmodified clients.
These properties make it impractical for clients to es-
tablish per-session keys with each replica. Moreover,
depending on clients to perform protocol-specific tasks
leads to poor backwards compatibility for legacy clients
of Internet services (e.g., web browsers), where cryp-
tographic support is not easily available [2]. Instead,
we might turn to using an entity knowledgeable of the
BFT protocol to proxy client requests to a service replica
group. And since Internet services already rely on the
correct operation of local middleboxes (at least with re-
spect to service availability), we extend this reliance
by converting the middlebox into a trusted proxy. The
trusted proxy interfaces multiple short-lived sessions be-
tween clients and itself with a single long-lived session
between itself and the replica group, acting as a client in
the traditional BFT sense.

When using proxied client access to a D-Prophecy
group, there is no need to maintain redundant caches at
each replica server: a shared cache at the trusted proxy
suffices, and it preserves delay-once consistency. A fast
read now mimics the performance of an unreplicated
read, as the proxy only asks one replica server for r and
validates the response with its (local) copy of s(r). Since
the cache is compact, the proxy remains a small and sim-
ple trusted component, amenable to verification. We call
this system Prophecy, and present its design in §3.

2.3 Applications

The delay-once semantics of Prophecy imply that faulty
nodes can at worst return stale (not arbitrary) data. This

semantics is sufficient for a variety of applications. For
example, Prophecy would be able to protect against the
Facebook and Flickr mishaps mentioned in the intro-
duction, because it would not allow arbitrary data to
reach the client. Applications that serve inherently static
(write-once) data are also good candidates, because here
a “stale” response is as fresh as the latest response. In §8
we demonstrate the propensity for static data in today’s
most popular websites.

Social networks and “Web 2.0 applications are good
candidates for delay-once consistency because they typ-
ically do not require all writes to be immediately visible.
Consider the following example from Yahoo!’s PNUTS
system [16]. A user wants to upload spring-break pho-
tos to an online photo-sharing site, but does not want his
mother to see them. So, he first removes her from the per-
mitted access list of his database record and then adds the
spring-break photos to this record. A consistency model
that allows these updates to appear in different orders at
different replicas, such as eventual consistency [22], is
insufficient: it violates the user’s intention of hiding the
photos from his mother. Delay-once consistency only
allows stale data to be returned, not data out-of-order:
if the photos are visible, then the access control update
must have already taken place. Further, once the user
has “refreshed” his own page and sees the photos, he is
guaranteed that his friends will also see them.

For applications where writes are critical, such as a
bank account, delay-once consistency is appropriate be-
cause it ensures that writes follow the protocol of the
replica group. Although reads may return stale results,
they can only do so in a limited way, as we discuss in
§4. On the other hand, there are some applications for
which delay-once consistency is not beneficial, such as
those that critically depend on reading the latest data
(e.g., a rail signaling service), or those that return non-
deterministic content (e.g., a CAPTCHA generator).

3 System Design

We first define a sketcher abstraction that lies at the heart
of Prophecy. For a more traditional setting, we use this
sketcher to design a distributed variant of Prophecy, or
D-Prophecy. We then present the design of Prophecy.

3.1 The Sketcher

Prophecy and D-Prophecy use a sketcher to improve
the performance of read requests to an existing replica
group. A sketcher maintains a history table of compact,
collision-resistant sketches of requests and responses
processed by a replica group. Each entry in the history
table is of the form (s(q),s(r)), where g is a request, r
is the response to ¢, and s is the sketching function used

.,
.,
.,
.,
.,

Replica
Server N
Replica Group

Figure 2: Executing a fast read in D-Prophecy. Only one
replica server executes the read (bold line); the others re-
turn the response sketch in the history table (dashed lines).

for compactness (s typically makes use of a secure hash
function like SHA-1). The sketcher looks up or updates
entries in the history table using a standard get/set inter-
face, keyed by s(g). In Prophecy, only read requests and
responses are stored in the history table.

The specific use of the sketcher and its interaction
with the replica group differs between Prophecy and D-
Prophecy. However, both systems require the replica
group to support the following request interface:

* RESP < fast(REQ q)
* (RESP r, SEQ_NO ©) « replicated(REQ q)

We expect the fast interface to be new for most replica
groups. The replicated interface should already exist, but
may need to be extended to return sequence numbers. No
modifications are made to the replica group beyond what
is necessary to support the interfaces, in either system.

3.2 D-Prophecy

Figure 2 shows the system model of D-Prophecy. Ex-
cept for the sketcher, all other entities are standard com-
ponents of a replicated service: clients send requests to
(and receive responses from) a service implemented by
N replica servers, according to some replication proto-
col like PBFT. Each replica server is augmented with a
sketcher that maintains a history table for read requests.
The history table is read by the fast interface and updated
by the replicated interface, as follows.

A client issues a fast read g by sending it to all replica
servers and choosing one of them to execute ¢ and re-
turn r. The policy for selecting a replica server is un-
specified, but a uniformly random policy has especially
useful properties (see §4.2). The other replicas use their
sketcher to lookup the entry for s(g) and return the cor-
responding response sketch s(r), or null if the entry does
not exist. If the client receives a quorum of non-null re-
sponse sketches that match the sketch of the actual re-
sponse, it accepts the response. The quorum size de-
pends on the replication protocol; we give an example

2 Replica
/ Server 1
> /

R Replica
! Replica /7
Client

3

Trusted proxy \ Replica
Server N

Replica Group

1
@ =—==r""
4

Clients

Figure 3: Prophecy mediating access to a replica group.

below. Otherwise, we say a transition has occurred and
the client reissues the request as a replicated read. A
replicated read is executed according to the protocol of
the replica group, with one additional step: all replica
servers use their sketcher to update the entry for s(g)
with the new value of s(r), before sending a response
to the client.

Readers familiar with the PBFT protocol will notice
that fast reads in D-Prophecy look very similar to PBFT
optimized reads. However, there is a crucial difference:
PBFT requires every replica server to execute the read,
while D-Prophecy requires only one such execution, per-
forming in-memory lookups of s(r) at the rest. For non-
null workloads, this represents a significant performance
improvement, as shown in §7. On the flip side, each
replica server requires additional memory to store its his-
tory table, though in practice this overhead is small. The
quorum size required for fast reads is identical to the quo-
rum size required for optimized reads: (2N +1)/3 re-
sponses suffices with some caveats (see §5.1.3 of [11]),
and N always suffices.

The architecture of D-Prophecy resembles that of a
traditional BFT system: clients establish session keys
with the replica servers and participate fully in the repli-
cation protocol. As we observed in §2.2, this makes D-
Prophecy unsuitable for Internet services, with their en-
vironment of short-lived sessions and unmodified clients.
This motivates the design of Prophecy, discussed next.

3.3 Prophecy

Figure 3 shows the simplest realization of Prophecy’s
system model. (We consider extensions to the basic
model in §5.) There are four types of entities: clients,
sketchers, replica clients, and replica servers. Unmod-
ified clients’ requests to a service are handled by the
sketcher; together with the replica clients, this serves as
the trusted proxy described in §2.2. The replica clients
interact with the service, implemented by a group of N
replica servers, according to some replication protocol.
The sketcher issues each request through a replica
client; the next subsection details the handling of re-
quests. Functionally, the sketcher in Prophecy plays
the same role as the per-replica-server sketchers in D-
Prophecy. Architecturally, however, its role is quite dif-

ferent. In Prophecy, a fast read is sent only to the single
replica server that executes it, and neither the fast nor
replicated interface accesses the history table directly.
Thus, the replica group is treated as a black box. Since
the sketcher is external to the replica group, writes pro-
cessed by the group may no longer be visible or dis-
cernible to the sketcher; i.e., there may exist an exter-
nal write channel. Since only replica clients interact di-
rectly with the replica servers, each replica client can
maintain a single, long-lived session with each replica
server. Wide-area clients are shielded from any churn
in the replica group and are unaware of the replication
protocol: the only responses they see are those that have
already been accepted by the sketcher.

The type of session used between clients and the
sketcher is left open by our design, as it may vary from
service to service. For example, services that only allow
read or simple write operations (e.g., HTTP GETs and
POSTs) may use unauthenticated sessions. A service like
Facebook may use authentication only during user lo-
gin, and use unauthenticated cookie-based sessions after
that. Finally, services that store private or protected data,
such as an online banking system, may secure sessions
at the application level (e.g., using HTTPS). Prophecy’s
architecture makes it easy to cope with the overhead of
client-sketcher authentication, because one can simply
add more sketchers if this overhead grows too high (see
§5). To achieve the same scale-out effect, traditional
BFT systems like PBFT and D-Prophecy would need to
add entire replica groups.

3.3.1 Handling a Request

The sketcher stores two additional fields with each entry
(s(q),s(r)) in the history table: the sequence number ©
associated with r, and a 2-bit value b indicating whether
s(q) is whitelisted (always issued as a fast read), black-
listed (always issued as a replicated request), or neither
(the default). The sketch s(r) is empty for whitelisted or
blacklisted requests. Algorithm 1 describes the process-
ing of a request and is illustrated in Figure 3 (numbers on
the right correspond to the numbered steps in the figure).

Prophecy requires a sequence number to be returned
by replicated, as it seeks to issue concurrent requests to
the replica group using multiple replica clients. Con-
currency allows reads to execute in parallel to improve
throughput. Unfortunately, a sketcher that issues re-
quests concurrently has no way of discerning the cor-
rect order of replicated reads by itself, i.e., the order they
were processed by the replica group. Thus, it relies on
the sequence number returned by replicated to ensure
that entries in the history table always reflect the latest
system state.

The sketcher requires some application-specific know-
ledge of the format of ¢ and r. This information is used

Algorithm 1 Processing a request at the sketcher.
Receive request g from client (D
if g is a read request then

(s(q),s(r),0,b) < Lookup s(g) in history table
if (s(r) # null) and (b # blacklisted) then

¥+ fast(q) (2)
if (s(') = s(r)) or (b = whitelisted) then
return 7’ to client 4)
end if
end if
(r',0") + replicated(q) 3)

if (s(r) = null) or (¢’ > o) then
Update history table with (s(q),s(r'),o’,b)

end if
else

(r',0") < replicated(q) 3)
end if
return ' to client “4)

to determine if ¢ is a read or write request, and to dis-
card extraneous or non-deterministic information from ¢
or r while computing s(g) or s(r). For example, in our
prototype implementation of Prophecy, an HTTP request
is parsed by an HTTP protocol handler to extract the
URL and HTTP method of the request; the same handler
removes the date/time information from HTTP headers
of the response. In practice, the required application-
specific knowledge is minimal and limited to parsing
protocol headers; the payload of the request or response
(e.g., the HTTP body) is treated opaquely by the sketcher.

Whitelisting and blacklisting add flexibility to the han-
dling of requests, but may require additional application-
specific knowledge. One use of blacklisting that does
not require such knowledge is to dynamically blacklist
requests that exhibit a high frequency of transitions (e.g.,
dynamic content). This allows the sketcher to avoid is-
suing fast reads that are very likely to fail. (We do not
currently implement this optimization.)

3.4 Performance

In our analysis and evaluation, the sketcher is able to ac-
commodate all read requests in its history table without
evicting any entries. If needed, a replacement policy such
as LRU may be used, but this is unlikely: our current im-
plementation can store up to 22 million unique entries
using less than 1GB of memory.

The performance savings of a sketcher come from the
ability to execute fast, load-balanced reads whose re-
sponses match the entries of the history table. Thus,
Prophecy and D-Prophecy are most effective in read-
mostly workloads. We can estimate the savings by look-
ing at the cost, in terms of per-replica processing time,

of executing a read in these systems. Let ¢ be the prob-
ability that a state transition occurs in a given workload.
Let Cg be the cost of a replicated read and C, the cost
of a fast read (excluding any sketcher processing in the
case of D-Prophecy), and let Cy;; be the cost of com-
puting a sketch and performing a lookup/update in a his-
tory table. Below, we calculate the expected cost of a
read in Prophecy and D-Prophecy when used with a BFT
replica group that uses PBFT’s read optimization. For
comparison, we include the cost of the unmodified BFT
group; here, ¢’ is the probability that a PBFT optimized
read fails.

Prophecy: [Cr +2Chist] + [t (NCR + Chigt)]
D-Prophecy: [C,+ (N — 1)Chis] + [t (NCg + NChig)]
BFT: [NC,] + [f'NCg]

The addends on the left and right of each equation
show the cost of a fast read and a replicated read, respec-
tively. The equations do not include optimizations that
benefit all systems equally, such as separating agreement
from execution [67]. Prophecy performs two lookups in
the history table during a fast read (one before and one
after executing the read), and one update to the history
table during a replicated read. D-Prophecy performs a
history table lookup at all but one replica server during
a fast read, and an update to the history table of each
replica server during a replicated read. These equations
show that Prophecy operates at maximum throughput
when there are no transitions, because only one replica
server processes each request, as compared to over 2/3
of the replica servers in the BFT system (assuming, ideal-
istically, that only a necessary quorum of replica servers
execute the optimized read, and the remaining replicas
ignore it). Since Cp;y < C, for non-null workloads—
the former involves an in-memory table lookup, the latter
an actual read—this is a factor of over (2/3)N improve-
ment. D-Prophecy’s savings are similar for the same
reason. Although ¢’ may be significantly less than ¢ in
practice—given that PBFT optimized reads may still suc-
ceed even when a state transition occurs—our evaluation
in §7 reveals that the benefit of PBFT optimized reads
over replicated reads is small for real workloads. Finally,
while Prophecy’s throughput advantage degrades as ¢ in-
creases, we demonstrate in §8 that ¢ is indeed low for
popular web services.

4 Consistency Properties

Despite their relatively simple designs, the consistency
properties of Prophecy and D-Prophecy are only slightly
weaker than those of the replica group. In this section,
we formalize the notion of delay-once consistency intro-
duced in §2. Delay-once consistency is a derived consis-

tency model; here, we derive it from linearizability [32],
the consistency model of most BFT protocols, and obtain
delay-once linearizability. Then, we show how Prophecy
implements delay-once linearizability.

4.1 Delay-once Linearizability

A history of requests and responses executed by a ser-
vice is linearizable if it is equivalent to a sequential his-
tory [39] that respects the irreflexive partial order on re-
quests imposed by their real-time execution [32]. Re-
quest X precedes request Y in this order, written X <Y,
if the response of X is received before Y is sent. Suppose
one client sends requests (R*, W”,R¢) to the service and
another client sends requests (W? R¢, R/ ,W#), with par-
tial order {R® < R®,W8 < R°}. Then a valid linearized
history could look like the following:

(RS, Wi, WY, RS R, W RS).
The R’s and W'’s represent read and write requests, and
subscripts represent the service state reflected in the re-
sponse to each request (following [28]). In contrast to
this history, the following is a valid delay-once lineariz-
able history, though it is not linearizable:

(RS, Wi, W3, RS, RS WS S).

Requests R® and R have stale responses because they do
not reflect the state update caused by sequentially prece-
dent writes (note that the staleness of R®’s response is
discernible to the issuing client, whereas the staleness of
R®’s response is not). At a high level, a delay-once his-
tory looks like a linearized history with reads that reflect
the state of prior reads, but not necessarily prior writes.
The manner in which reads can be stale is not arbitrary,
however. Specifically, a history H is delay-once lineariz-
able if the subsequence of write requests in H, denoted
by H|w, satisfies linearizability, and if read requests sat-
isfy the following property:

Delay-once property. For each read request R, in
H, let R, and W, be the read and write request of
maximal order in H such that Ry < R, and W; < R,.
Then either x =y or x = z.

Delay-once linearizability implies both monotonic
read and monotonic write consistency, but not read-after-
write consistency. If <g is the partial order of the history
H, delay-once linearizability respects <y, but not <,
due to the possible presence of stale reads.

The delay-once property ensures two things: first,
reads never reflect state older than that of the latest read
(they are only delayed to one stale state), and second,
reads that are updated reflect the latest state immediately.
Thus, a system that implements delay-once consistency
is responsive. To verify if a read in a delay-once consis-
tent history H is stale, one can check the following:

Staleness indicator. Given a read request R, in H,
let W, be the write request of maximal order in H
such that W, < R,. Ry is stale if and only if x < y.

The staleness property explains why object-based sys-
tems like web services fare particularly well with delay-
once consistency. In these systems, state updates to one
object are isolated from other objects, so staleness can
only occur between writes and reads to the same object.

The above derivation of delay-once consistency is
based on linearizability, but derivations from other con-
sistency models are possible. For example, a weaker
condition called read-after-write consistency also yields
meaningful delay-once semantics.

4.2 Prophecy’s Consistency Semantics

We now show that Prophecy implements delay-once lin-
earizability when used with a replica group that guaran-
tees linearizability, such as a PBFT replica group. A
similar (but simpler) argument shows that D-Prophecy
achieves delay-once linearizability, omitted here due to
space constraints.

Prophecy inherits the system and network model of the
replica group. When used with a PBFT replica group, we
assume an asynchronous network between the sketcher
and the replica group that may fail to deliver messages,
may delay them, duplicate them, or deliver them out-of-
order. Replica clients issue requests to the replica group
one at a time; requests are retransmitted until they are
received. We do not make any assumptions about the or-
ganization of the service’s state; for example, the service
may be a monolithic replicated state machine [40, 58]
or a collection of numerous, isolated objects [32]. The
sketcher may process requests concurrently. We model
this concurrency by allowing the sketcher to issue re-
quests to multiple replica clients simultaneously; the or-
der in which these requests return from replica clients is
arbitrary. Updates to service state may not be discernible
or visible to the sketcher—i.e., there may exist an ex-
ternal write channel—as discussed in §3.3. We show
that Prophecy achieves delay-once linearizability despite
concurrent requests and external writers.

Our analysis of Prophecy’s consistency requires a non-
standard approach because it is the sketcher, not the
replica servers, that enforces this consistency, and be-
cause fast reads are executed by individual replicas. In
particular, we introduce the notion of an accepted his-
tory. Let H; for 1 <i < N be the history of all write
requests executed by replica server i and all fast read re-
quests executed by i that were accepted by the sketcher.
Let R, be the history of all replicated read requests ac-
cepted by the sketcher. An accepted history A; is the
union of H; and R, for each replica server i. The po-
sition in A; of each replicated read in R, is well defined

because all reads are accepted at a single location (the
sketcher) and all replicated requests are totally ordered
by linearizability. We claim that the accepted history A;
is delay-once linearizable.

To see this, observe that replicated requests satisfy
linearizability because they follow the protocol of the
replica group. The sketcher ensures that replicated reads
update the history table according to this order by using
the sequence numbers returned by the replicated inter-
face. Further, the sketcher only accepts a fast read if it
reflects the state of the latest replicated read. Since A;
contains all replicated reads accepted by the sketcher (not
just those accepted by i), and since accepted fast reads
never reflect new state, it follows that all fast reads in A;
must satisfy the delay-once property. While A; may not
contain all write requests accepted by the replica group
(e.g., if i is missing an update), this only affects i’s abil-
ity to participate in replicated reads, and does not violate
delay-once linearizability. Thus, we conclude that A; is
delay-once linearizable.

Limiting staleness via load balancing. Stale responses
are returned by faulty replica servers or correct replica
servers that are out-of-date. We can easily verify if an
accepted history contains stale responses by checking the
staleness indicator defined in §4. To limit the number of
stale responses, the fast interface dispatches fast reads
from all clients uniformly at random over the replica
servers.” Let g be the fraction of faulty or out-of-date
replica servers currently in the replica group. If g is a
constant, then g", the probability that k consecutive fast
reads are sent to these servers, is exponentially decreas-
ing. For BFT protocols, g < 2/3 assuming a worst-case
scenario where the maximum number of correct nodes
are out-of-date. For a replica group of size 4, the proba-
bility that k > 6 is less than 1.6%.

S Scale and Complex Architectures

This section describes extensions to the basic Prophecy
model in order to integrate fault tolerance into larger-
scale and more complex environments.

Scaling through multiple sketchers. In the basic sys-
tem model of Prophecy (Figure 3), the sketcher is a single
bottleneck and point-of-failure. We address this limita-
tion by using multiple sketchers to build a sketching core,
as follows. First, we horizontally partition the global
history table, based on s(g)’s, into non-overlapping re-
gions, e.g., using consistent hashing [33]. We assign
each region to a distinct sketcher, which we refer to as re-
sponse sketchers. The partitioning preserves delay-once

2We assume for simplicity that the random selection is secure,
though in practice faulty replica servers may hamper this process. The
latter is an interesting problem, but outside the scope of this paper.

semantics because only a single sketcher stores the en-
try for each s(g). Second, we build a two-level sketch-
ing system as shown in Figure 4, where the first tier
of request sketchers demultiplex client requests. That
is, given a request ¢, any of a small number of request
sketchers computes s(g) and forwards g to the appropri-
ate response sketcher. Using a one-hop distributed hash
table (DHT) [27, 33] to manage the partitioning works
well, given the network’s small, highly-connected nature.
The response sketchers (the members of this DHT) issue
requests to the replica group(s) and sketch the responses,
ultimately returning them to the clients. (Importantly, the
replica servers in Figure 4 need not be part of a single
replica group, but may instead be organized into mul-
tiple groups.) The larger number of response sketchers
reflects the asymmetric bandwidth requirements of net-
work protocols like HTTP. We evaluate the scaling ben-
efits of multiple response sketchers in §7.7.

Handling sketcher failures. The sketching core han-
dles failure and recovery of sketchers seamlessly, be-
cause it can rely on the join and leave protocol of the
underlying DHT. Since request sketchers direct client re-
quests, they maintain the partitioning of the DHT. To
preserve delay-once semantics, this partitioning must be
kept consistent [10, 66] to avoid sending requests from
the same region of the history table to multiple response
sketchers. Prophecy’s support for blacklisting simplifies
this task, however. In particular, whenever a region of
the history table is being relinquished or acquired be-
tween response sketchers, we can allow more than one
response sketcher to serve requests from the same region
provided the entire region is blacklisted (forcing all re-
quests to be replicated). Once the partitioning has stabi-
lized, the new owner of the region can unset the blacklist
bit. As a result, membership dynamics can be handled
smoothly and simply, at the cost of transient inefficiency
but not inconsistency.

Mediating loosely-coupled groups. A sketching core
can be shared by the multiple, loosely-coupled com-
ponents that typically comprise a real service. Alter-
natively, components that operate in parallel can use
Prophecy via dedicated sketchers. Components that op-
erate in series, such as multi-tier web services, can use
Prophecy prior to each tier. However, applying agree-
ment protocols in series introduces nontrivial consis-
tency issues. We leave this problem to future work.

6 Implementation

Our implementation of Prophecy and D-Prophecy is
based on PBFT [12]. We used the PBFT codebase given
its stable and complete implementation, as well as newer
results [6] showing its competitiveness with Zyzzyva and

Request Response Replica | %ot)
Replica

Response Replica

Sketcher Client

Response Replica ‘

Sketcher Client

Request Response Replica | ...t Replica

Sketcher Sketcher Client

Figure 4: Scaling out Prophecy using multiple sketchers.

Clients

other recent protocols (much more so than was origi-
nally indicated [38]). We implemented and compared
three proxied systems (Prophecy, proxied PBFT with-
out optimized reads, and proxied PBFT with optimized
reads), as well as three non-proxied (“direct”) systems
(D-Prophecy, PBFT without optimized reads, and PBFT
with optimized reads). In our evaluation, we will com-
pare proxied systems only with other proxied systems,
and similarly for direct systems, as the architectures and
assumptions of the two models are fundamentally differ-
ent. The proxied systems do not authenticate communi-
cation between clients and the sketcher, though they eas-
ily can be modified to do so with equivalent overheads.

We implemented a user-space Prophecy sketcher in
about 2,000 lines of C++ code using the Tamer asyn-
chronous I/O library [36]. The sketcher forks a pro-
cess for each core in the machine (8 in our test clus-
ter), and the processes share a single history table via
shared memory. The sketcher interacts with PBFT
replica clients through the PBFT library. The pool of
replica clients available to handle requests is managed as
a queue. The sketching function uses a SHA-1 hash [48]
over parts of the HTTP header (for requests) and the en-
tire response body (for responses). The proxied PBFT
variants share the same code base as the sketcher, but do
not perform sketching, issue fast reads, or create or use
the history table.

We modified the PBFT library in three ways: to add
support for fast reads (about 20 lines of code), to return
the sequence numbers (about 20 LOC), and to add sup-
port for D-Prophecy (about 100 LOC). Additional modi-
fications enabled the same process to use multiple PBFT
clients concurrently (500 LOC), and modified the sim-
ple server distributed with PBFT to simulate a webserver
and allow “null” writes (500 LOC), as null operations
actually have 8-byte payloads in PBFT. We also wrote a
PBFT client in about 1000 lines of C++/Tamer that can
be used as a client in direct systems and as a replica client
in proxied systems.

System || median | 1Ist | 99th |
pr-PBFT 433 379 | 706
pr-PBFT-ro 296 255 | 544
Prophecy 256 216 | 286
Prophecy-100 617 553 | 768
PBFT 286 272 | 309

PBFT-ro 144 135 | 168
D-Prophecy 144 129 | 197
D-Prophecy-100 429 412 | 574

Table 2: Latency in ps for serial null reads.

7 Evaluation

This section quantifies the performance benefits and
costs of Prophecy and D-Prophecy, by characterizing
their latency and throughput relative to PBFT under vari-
ous workloads. We explore how the system’s throughput
characteristics change when we modify a few key vari-
ables: the processing time of the request, the size of the
response, and the client’s session length. Finally, we ex-
amine how Prophecy scales with the replica group size.

7.1 Experimental Setup

All of our experiments were run in a 25-machine clus-
ter. Each machine has eight 2.3GHz cores and 8GB of
memory, and all are connected to a 1Gbps switch.

The proxied systems are labeled Prophecy, pr-PBFT
(proxied PBFT), and pr-PBFT-ro (proxied PBFT with the
read optimization). The direct systems are labeled D-
Prophecy, PBFT, and PBFT-ro (PBFT with the read op-
timization). Multicast and batching are not used in our
experiments, as they do not impact performance when
using read optimizations; all other PBFT optimizations
are employed. Unless otherwise specified, all experi-
ments used four replica servers, a single sketcher/proxy
machine for the proxied systems, and a single client ma-
chine. The proxied experiments used 40 replica clients
across eight processes at the sketcher/proxy, and had 100
clients establish persistent HTTP connections with the
sketcher/proxy. The direct experiments used 40 clients
across eight processes. These numbers were sufficient
to fully saturate each system without degrading perfor-
mance. All experiments use infinite-length sessions be-
tween communicating entities (except for the one eval-
uating the effect of session length). Throughput exper-
iments were run for 30-second intervals and throughput
was averaged over each second.

In some experiments, we report numbers for
Prophecy-X or D-Prophecy-X, which signifies that the
systems experienced state transitions X % of the time.

60 -

Prophecy —+—
pr-PBFT-ro

50
40
30 |
20
10 |

Throughput (Kregs/s)

0 0.2 0.4 0.6

Transition Ratio

0.8 1

Figure 5: Throughput of null reads for proxied systems
(Prophecy, pr-PBFT, and pr-PBFT-ro).

70
60 -
50
40
30
20
10

PBFT-ro
D-Prophecy —+—

Throughput (Kregs/s)

0.4 0.6
Transition Ratio

0.8 1

Figure 6: Throughput of null reads for direct systems (D-
Prophecy, PBFT, and PBFT-ro).

7.2 Null Workload

Latency. Table 2 shows the median and 99th percentile
latencies for 100,000 serial null requests sent by a single
client. All systems displayed low latencies under 1ms, al-
though the proxied systems have higher latencies as each
request must traverse an extra hop. Prophecy, pr-PBFT-
ro, D-Prophecy, and PBFT-ro all avoid the agreement
phase during request processing and thus have notably
lower latency than their counterparts. Prophecy-100 and
D-Prophecy-100 represent a worst-case scenario where
every fast read fails and is reissued as a replicated read.

Throughput. Figure 5 shows the aggregate throughput
of the proxied systems for executing null requests. We
achieve the desired transition ratio by failing that fraction
of fast reads at the sketcher.

Since replica servers can execute null requests
cheaply, the sketcher/proxy becomes the system bot-
tleneck in these experiments. Nevertheless, Prophecy
achieves 69% higher throughput than pr-PBFT-ro due to
its load-balanced fast reads, which require fewer pack-
ets to be processed by replica servers. As the transi-
tion ratio increases, however, Prophecy’s advantage de-
creases because fewer fast reads match the history table.
For example, when transitions occur 15% of the time—a
representative ratio from our measurement study in §8—
Prophecy’s throughput is 7% lower than pr-PBFT-ro’s.

Figure 6 depicts the aggregate throughput of the direct
systems. In this experiment, 40 clients across two ma-
chines concurrently execute null requests. D-Prophecy’s

10

4+ Prophecy —+—
pr-PBFT-ro ---x---
pr-PBFT e

3r Proph-15

Normalized Throughput

5 ;***,n *

1 I 1 1 1 1 1 1 1 1
16 32 64 128 256 512
Processing Time (us)

Figure 7: Throughput of proxied systems as processing
time increases, normalized against pr-PBFT-ro.

throughput is 15% lower than PBFT-ro’s when there
are no transitions, and 50% lower when there are 15%
transitions. D-Prophecy derives no performance advan-
tage from its fast reads because the optimized reads of
PBFT take no processing time, while D-Prophecy pays
the overhead for sketching and history table operations.

7.3 Server Processing Time

The previous subsection shows that when requests take
almost no time to process, Prophecy improves through-
put only by decreasing the number of packets at each
replica server, while D-Prophecy fails to achieve bet-
ter throughput. However, when the replicas perform
real work, such as the computation or disk I/O associ-
ated with serving a webpage, Prophecy’s improvement is
more dramatic.

Figures 7 and 8 demonstrate how varying processing
time affects the throughput of proxied systems (normal-
ized against pr-PBFT-ro) and direct systems (normal-
ized against PBFT-ro), respectively. As the processing
time increases—implemented using a busy-wait loop—
the cost of executing requests begins to dominate the cost
of agreeing on their order. This decreases the effective-
ness of PBFT’s read optimization, as evidenced by the
increase in pr-PBFT’s throughput relative to pr-PBFT-
ro, and similarly between PBFT and PBFT-ro. At the
same time, the higher execution costs dramatically in-
crease the effectiveness of load balancing in Prophecy
and D-Prophecy. Their throughput approaches 3.9 times
the baseline, which is only 2.5% less than the theoretical
maximum.

The effectiveness of load-balancing is more pro-
nounced in Prophecy than in D-Prophecy for two main
reasons. First, Prophecy’s fast reads involve only one
replica server, while D-Prophecy’s fast reads involve all
replicas, even though only a single replica actually exe-
cutes the request. Second, Prophecy performs sketching
and history table operations at the sketcher, whereas D-
Prophecy implements such functionality on the replica
servers, stealing cycles from normal processing.

PBFT-ro ——
PBFT

Normalized Throughput

1 1 1 1 1 1 1 1 1 1
1 2 4 8 16 32 64 128 256 512
Processing Time (us)

Figure 8: Throughput of direct systems as processing time
increases, normalized against PBFT-ro.

. 35r Prophecy —+—

e 30t pr-PBFT-ro

o _PBFT e

g | pr-PBFT

é 20

< 15

[=2]

3 10 —

S 5F —t
0 1 1 1 1 1 1

0 0.2 0.4 0.6 0.8 1

Transition Ratio

Figure 9: Throughput of reads of a 1-byte webpage to
Apache webservers for proxied systems.

7.4 Integration with Apache Webserver

We applied Prophecy to a replica group in which each
server runs the Apache webserver [7], appropriately
modified to return deterministic results. Upon receiving
a request, a PBFT server dispatches the request body to
Apache via a persistent TCP connection over localhost.

Figure 9 shows the aggregate throughput of the prox-
ied systems for serving a 1-byte webpage. When there
are no transitions, Prophecy’s throughput is 372% that
of pr-PBFT-ro. At the representative ratio of 15%,
Prophecy’s throughput is 205% that of pr-PBFT-ro. The
processing time of Apache is enough to dominate all
other factors, causing Prophecy’s use of fast reads to sig-
nificantly boost its throughput.

Figure 10 shows the throughput of direct systems.
With no transitions, D-Prophecy’s throughput is 265%
that of PBFT-ro, and 141% when there are 15% transi-
tions.

In these experiments, the local HTTP requests to
Apache took an average of 94us. For the remainder of
this section, we use a simulated processing time of 94 s
within replica servers when answering requests.

7.5 Response Size

Next, we evaluate the proxied systems’ performance
when serving webpages of increasing size, as shown by
Figure 11. As the response size increases, fewer replica
clients were needed to maximize throughput. At the
same time, Prophecy’s throughput advantage decreases
as the response size increases, as the sketcher/proxy

11

—~ 25 D-Prophecy —+—
2 PBFT-ro
g 20 F (221 p—
<
= 15
>
(=%
S 10 |
>
=] \Nﬁ
= 5F
=
O 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Transition Ratio

Figure 10: Throughput of concurrent reads of a 1-byte
webpage to Apache webservers for direct systems.

Prophecy —+—
Prophecy-15
pr-PBFT-ro ---%---

Normalized Throughput

16

Response Size (KB)
Figure 11: Throughput of proxied systems as response size
increases, normalized against pr-PBFT-ro.

becomes the bottleneck in each scenario. Increasing
the replica servers’ processing time shifts this drop in
Prophecy’s throughput to the right, as it increases the
range of response sizes for which processing time is the
dominating cost. Note that we only evaluate the systems
up to 64KB responses, because PBFT communicates via
UDP, which has a maximum packet size of 64KB.

7.6 Session Length

Our experiments with direct systems so far did not ac-
count for the cost of establishing authenticated sessions
between clients and replica servers. To establish a new
session, the client must generate a symmetric key that
it encrypts with each replica server’s public key, and
each replica server must perform a public-key decryp-
tion. Given the cost of such operations, the performance
of short-lived sessions can be dominated by the overhead
of session establishment, as we discussed in §2.2.
Figure 12 demonstrates the effect of varying session
length on the direct systems, in which each request per
session returns a 1-byte webpage. We find that the
throughput of PBFT and PBFT-ro are indistinguishable
for short sessions, but as session length increases, the
cost of session establishment is amortized over a larger
number of requests, and PBFT-ro gains a slight through-
put advantage. Similarly, D-Prophecy achieves its full
throughput advantage only when sessions are very long.
We do not evaluate the effect of session lengths in the
proxied systems, because they currently do not authenti-

4 D-Prophecy —+—
D-Prophecy-15
PBFT-ro ---%:---
3T PBFT -

T R e e e 8 ol B B o

Normalized Throughput

1 1 1 1 1 1 1
16 64 256 1024 4096
Session Length (regs)

Figure 12: Throughput of direct systems as session length
increases, normalized against PBFT-ro.

o 120 | pr-PBFT-ro i
3 100 Prophecy STy
% Prophecy-15
g 80
5 60 -
o
S 40
3
c 20 N
= P\
0 ==

4 7 10

Replica Group Size
Figure 13: Throughput of Prophecy and pr-PBFT-ro with
varying replica group sizes.

cate communication with the clients. Authentication can
easily be incorporated into these systems, however, at a
similar cost to Prophecy and pr-PBFT. That said, prox-
ied systems can better scale up the maximum rate of ses-
sion establishment than direct systems, as we observed
in §3.3: each additional proxy provides a linear rate in-
crease, while direct systems require an entire new replica
group for a similar linear increase.

7.7 Scaling Out

Finally, we characterize the scaling behavior of Prophecy
and proxied PBFT systems. By increasing the size of
their replica groups, PBFT systems gain resilience to a
greater number of Byzantine faults (e.g., from one fault
per 4 replicas, to four faults per 13 replicas). However,
their throughput does not increase, as each replica server
must still execute every request. On the other hand,
Prophecy’s throughput can benefit from larger groups, as
it can load balance fast reads over more replica servers.
As the sketcher can become a bottleneck in the system at
higher read rates, we used two sketchers for a 7-replica
group and three sketchers for a 10- and 13-replica group.

Figure 13 shows the throughput of proxied systems for
increasing group sizes. Prophecy’s throughput is 395%,
739%, 1000%, and 1264 % that of pr-PBFT-ro, for group
sizes of 4, 7, 10, and 13 replicas, respectively. Prophecy
does not achieve such a significant throughput improve-
ment when experiencing transitions, however. We see
that a 15% transition ratio prevents Prophecy from han-

12

= 5 responses
> 10 responses 4
= 25 responses
2 50I TeSponses

CDF of unique URLs

0.2

0 C 1 1 1
0.4 0.6
Transition ratio

0.8 1

Figure 14: A CDF of requests over transition ratios.

dling more than 32,000 req/s, which it achieves with a
replica group of size 10. Thus, under moderate transition
rates, further increasing the replica group size will only
increase fault tolerance, not throughput.

8 Measurement Study of Alexa
Sites

The performance savings of Prophecy are most pro-
nounced in read-mostly workloads, such as those involv-
ing DNS: of the 40K names queried by the ConfiDNS
system [52], 95.6% of them returned the same set of IP
addresses every time over the course of one day. In web
services, it is less clear that transitions are rare, given the
pervasiveness of so-called “dynamic content”.

To investigate this dynamism, we collected data from
the Alexa top 25 websites by scripting a Firefox browser
to reload the main page of each site every 20 seconds
for 24 hours on Dec. 29, 2008. Among the top sites
were www.youtube.com, www.facebook.com,
www.skyrock.com, www.yahoo.co.Jp, and
www.ebay.com.> The browser loads and executes
all embedded objects and scripts, including embedded
links, JavaScript, and Flash, with caching disabled. We
captured all network traffic using the tcpflow utility [19],
and then ran our HTTP parser and SHA-1-based sketch-
ing algorithm to build a compact history of requests and
responses, similar to the real sketcher.

Our measurement results show that transitions are rare
in most of the downloaded data. We demonstrate a clear
divide between very static and very dynamic data, and
use Rabin fingerprinting [55] to characterize the dynamic
data. Finally, we isolate the results of individual geo-
graphic “sites” using a CIDR prefix database.

8.1 Frequency of Transitions

For each unique URL requested during the experiment,
we measured the ratio of state transitions over repeated

3While one might argue that BFT agreement is overkill for many
of the sites in our study, our examples in the introduction show that
Heisenbugs and one-off misconfigurations can lead to embarrassing,
high-profile events. Prophecy protects against these mishaps without
the performance penalty normally associated with BFT agreement.

" et 7
| h
Z o8l ; 1
2 H
S o6 |
g
=
5 oaf |
o
('8
0.2 |
:
0L) , s paqy |
0 0.2 0.4 06 0.8 1

Transition ratio

Figure 15: A CDF over transition ratios of first-party vs.
third-party URLs.

requests. Figure 14 shows a CDF of unique URLs at
different transition ratios. We separately plotted those
URLSs based on the number of requests sent to each one,
given that embedded links generate a variable number
of requests to some sites. (Where not specified, the
minimum number of requests used is 25.) We see that
roughly 50% of all data accessed is purely static, and
about 90% of all requests have fewer than 15% state tran-
sitions. These numbers confirmed our belief that most
dynamic websites are actually dynamic compositions of
very static content. The same graph scaled by the av-
erage response size of each request yields very similar
curves (omitted), suggesting that Figure 14 also reflects
the total response throughput at each transition ratio.

Figure 15 is the same plot as Figure 14 but divided
into first-party URLs, or those targeted at an Alexa top
website, and third-party URLS, or those targeted at other
sites (given that first-party sites can embed links to other
domains for image hosting, analytics, advertising, etc.).
The graph shows that third-party content is much more
static than first-party content, and thus third-party con-
tent providers like CDNs and advertisers could benefit
substantially from Prophecy.

The results in this section are conservative for two rea-
sons. First, they reflect a workload of only three requests
per minute per site, when in reality there may be tens or
hundreds of thousands of requests per minute. Second,
many URLs—though not enough to cause space prob-
lems in a real history table—saw only a few requests, but
returned identical responses, suggesting that our HTTP
parser was conservative in parsing them as unique URLs.
An important characteristic of all of the graphs in this
section is the relatively flat line across the middle: this
suggests that most data is either very static or very dy-
namic.

8.2 Characterizing Dynamic Data

Dynamic data degrades the performance of Prophecy be-
cause it causes failed fast reads to be resent as repli-
cated reads. Often, however, the amount of dynamism
is small and may even be avoidable. To investigate this,
we characterized the dynamism in our data by using Ra-

13

bin fingerprinting to efficiently compare responses on ei-
ther side of a transition. We divided each response into
chunks of size 1K in expectation [47], or a minimum of
20 chunks for small requests.

Our measurements indicate that 50% of all transitions
differ in at least 30% of their chunks, and about 13%
differ in all of their chunks. Interestingly, the edit dis-
tance of these transitions was much smaller: we deter-
mined that 43% of all transitions differ by a single con-
tiguous insertion, deletion, or replacement of chunks,
while preserving at least half or no more than doubling
the number of original chunks. By studying transitions
with low edit distance, we can identify sources of dy-
namism that may be refactorable. For example, a prelim-
inary analysis of around 4,000 of these transitions (se-
lected randomly) revealed that over half of them were
caused by load-balancing directives (e.g., a number ap-
pended to an image server name) and random identifiers
(e.g., client IDs) placed in embedded links or parame-
ters to JavaScript functions. In fact, most of the top-level
pages we downloaded, including seemingly static pages
like www . google . com, were highly dynamic for this
exact reason. A more in-depth analysis is slated for fu-
ture work.

8.3 Site-Based Analysis

A “site” represents a physical datacenter or cluster of ma-
chines in the same geographic location. A single site
may host large services or multiple services. Having
demonstrated Prophecy’s ability to scale out in such en-
vironments, we now study the potential benefit of de-
ploying Prophecy at the sites in our collected data. To
organize our data into geographic sites, we used forward
and reverse DNS lookups on each requested URL and
matched the resulting IP addresses against a CIDR pre-
fix database. (This database, derived from data supplied
by Quova [54], included over 2 million distinct prefixes,
and is thus significantly finer-grained than those provided
by RouteViews [57].) Requests that mapped to the same
CIDR prefix were considered to be part of the same site.
Figure 16 shows an overlay of the transition plots of each
site. From the figure, a few sites serve very static data
or very dynamic data only, but most sites serve a mix
of very static and very dynamic data. All but one site
(view.atdmt .com) show a clear divide between very
static and very dynamic data.

9 Related Work

A large body of work has focused on providing strong
consistency and availability in distributed systems. In the
fail-stop model, state machine replication typically used
primary copies and view change algorithms to improve

0.8 [§

06 | if

04 I}

02 | ¥

CDF of unique URLs

0.4 0.6
Transition ratio
Figure 16: A CDF of URLs over transition ratios for all
sites for which CIDR data was available.

performance and recover from failures [41, 50]. Quo-
rum systems focused on tradeoffs between overlapping
read and write sets [26, 31]. These protocols have been
extended to malicious settings, both for Byzantine fault-
tolerant replicated state machines [12, 42, 56], Byzantine
quorum systems [1, 46], or some hybrid of both [17].
Modern approaches have optimized performance via var-
ious techniques, including by separating agreement from
execution [67], using optimistic server-side speculation
on correct operation [38], reducing replication costs
by optimizing failure-free operation [65], and allow-
ing concurrent execution of independent operations [37].
Prophecy’s history table is motivated by the same as-
sumption as this last approach—namely, that many op-
erations/objects are independent and hence often remain
static over time.

Given the perceived cost of achieving strong consis-
tency and a particular desire to provide “always-on”
write availability, even in the face of partitions, a num-
ber of systems opted for cheaper techniques. Several
BFT replicated state machine protocols were designed
with weaker consistency semantics, such as BFT2F [44],
which weakens linearizability to fork*™ consistency, and
Zeno [59], which weakens linearizability to eventual
consistency. Several filesystems were designed in a sim-
ilar vein, such as SUNDR [45] and systems designed
for disconnected [29, 35] or partially-connected oper-
ation [51]. BASE [53] explored eventual consistency
with high scalability and partition tolerance; the foil
to database ACID properties. More recently, highly-
scalable storage systems being built out within data-
centers have also opted for cheaper consistency tech-
niques, including the Google File System [25], Yahoo!’s
PNUTS [16], Amazon’s Dynamo [18], Facebook’s Cas-
sandra [20], eBay’s storage techniques [61], or the popu-
lar approach of using Memcached [23] with a backend
relational database. These systems take this approach
partly because they view stronger consistency properties
as infeasible given their performance (throughput) costs;
Prophecy argues that this tradeoff is not necessary for
read-mostly workloads.

14

Recently, several works have explored the use of
trusted primitives to cope with Byzantine behavior.
A2M [13] prevents faulty nodes from lying inconsis-
tently by using a trusted append-only memory primi-
tive, and Trlnc [43] uses a trusted hardware primitive
to achieve the same goal. Chun et al. [14] introduced a
lightweight BFT protocol for multi-core single-machine
environments that runs a trusted coordinator on one core,
similar in philosophy to Prophecy’s approach of extend-
ing the trusted computing base to include the sketcher.

Prophecy is unique in its application to customer-
facing Internet services and its ability to load-balance
read requests across a replica group while retaining good
consistency semantics. Perhaps closest to Prophecy’s se-
mantics is the PNUTS system [16], which supports a
load-balanced read primitive that satisfies timeline con-
sistency (all copies of a record share a common timeline
and only move forward on that timeline). Delay-once lin-
earizability is strictly stronger than timeline consistency,
however, because it does not allow a client to see a copy
of a record that is more stale than a copy the client has
already seen (whereas timeline consistency does).

There has been some work on using history as a con-
sistency or security metric for particular applications.
Aiyer et al. [4, 5] develop k-quorum systems that bound
the staleness of a read request to one of the last k written
values. Using Prophecy with a k-quorum system may
be synergistic: Prophecy’s load-balanced reads are less
costly than quorum reads, and k-quorum systems can
protect against an adversarial scheduler that attempts to
hamper Prophecy’s load balancing. The Farsite file sys-
tem [3] uses historical sketches to validate read requests,
but requires a lease-based invalidation protocol to keep
sketches strongly consistent. The system modifies clients
extensively and requires knowledge of causal dependen-
cies (if these constraints are ignored, then D-Prophecy
can easily be modified to achieve the same consistency
as Farsite). Pretty Good BGP [34] whitelists BGP adver-
tisements whose new route to a prefix includes its pre-
vious originating AS, while other routes require manual
inspection. ConfiDNS [52] uses both agreement and his-
tory to make DNS resolution more robust. It requires
results to be static for a number of days and agreed upon
by some number of recursive DNS resolvers. Perspec-
tives [63] combines history and agreement in a simi-
lar way to verify the self-signed certificates of SSH or
SSL hosts on first contact. Prophecy can be viewed as
a framework that leverages history and agreement in a
general manner.

10 Conclusions

Prophecy leverages history to improve the throughput of
Internet services by expanding the trusted middlebox be-

tween clients and a service replica group, while provid-
ing a consistency model that is very promising for many
applications. D-Prophecy achieves the same benefits for
more traditional fault-tolerant services. Our prototype
implementations of Prophecy and D-Prophecy easily in-
tegrate with PBFT replica groups and are demonstra-
bly useful in scale-out topologies. Performance results
show that Prophecy achieves 372% of the throughput of
even the read optimized PBFT system, and scales lin-
early as the number of sketchers increases. Our evalua-
tion demonstrates the need to consider a variety of work-
loads, not just null workloads as typically done in the lit-
erature. Finally, our measurement study of the Internet’s
most popular websites demonstrates that a read-mostly
workload is applicable to web service scenarios.

Acknowledgments

We thank our shepherd Petros Maniatis for helpful com-
ments on earlier versions of this paper. Siddhartha Sen
was supported through a Google Fellowship in Fault Tol-
erant Computing. Equipment and other funding was pro-
vided through the Office of Naval Research’s Young In-
vestigator program. None of this work reflects the opin-
ions or positions of these organizations.

References

[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter,
and J. Wylie. Fault-scalable byzantine fault-tolerant ser-
vices. In SOSP, Oct. 2005.

B. Adida. Helios: Web-based open-audit voting.
USENIX Security, July 2008.

A. Adya, W. J. Bolosky, M. Castro, G. Cermak,
R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. Wattenhofer. FARSITE: Federated,
available, and reliable storage for an incompletely trusted
environment. In OSDI, Dec 2002.

A.S. Aiyer, L. Alvisi, and R. A. Bazzi. On the availability
of non-strict quorum systems. In DISC, Sept. 2005.

A. S. Aiyer, L. Alvisi, and R. A. Bazzi. Byzantine and
multi-writer K-quorums. In DISC, Sept. 2006.

L. Alvisi, A. Clement, M. Dahlin, M. Marchetti, and
E. Wong. Making Byzantine fault tolerant systems tol-
erate Byzantine faults. In NSDI, Apr. 2009.

Apache HTTP Server. http://httpd.apache.
org/, 2009.

A. Avizienis and L. Chen. On the implementation of n-
version programming for software fault tolerance during
execution. In IEEE COMPSAC, Nov. 1977.

G. Bracha and S. Toueg. Asynchronous consensus and
broadcast protocols. Journal of the ACM, 32(4), 1985.

In

(2]

(3]

(4]
(3]

(6]

(7]

(8]

(9]

[10] M. Burrows. The Chubby lock service for loosely-
coupled distributed systems. In OSDI, Nov. 2006.
[11] M. Castro. Practical Byzantine Fault-Tolerance. PhD

thesis, Mass. Inst. of Tech., 2000.

15

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]
[25]
(26]
(27]

(28]

[29]

(30]

(31]

(32]

M. Castro and B. Liskov. Practical Byzantine fault toler-
ance. In OSDI, Feb. 1999.

B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz.
Attested append-only memory: making adversaries stick
to their word. In SOSP, Oct. 2007.

B.-G. Chun, P. Maniatis, and S. Shenker. Diverse repli-
cation for single-machine Byzantine-Fault Tolerance. In
USENIX Annual, June 2008.

A. Clement, M. Marchetti, E. Wong, L. Alvisi, and
M. Dahlin. BFT: The time is now. In LADIS, Sept. 2008.
B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silber-
stein, P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver,
and R. Yerneni. PNUTS: Yahoo!’s hosted data serving
platform. In VLDB, Aug. 2008.

J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and
L. Shrira. HQ replication: A hybrid quorum protocol for
Byzantine fault tolerance. In OSDI, Nov. 2006.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lak-shman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly
available key-value store. In SOSP, 2007.

J. Elson. tcpflow—A TCP Flow Recorder.
http://www.circlemud.org/~7jelson/
software/tcpflow/, 2009.

Facebook. Facebook release cassandra: A structured
storage system on a p2p network. http://code.
google.com/p/the-cassandra-project/,
2008.

Facebook. Scaling out. http://www.facebook.
com/note.php?note_1d=23844338919, Aug.
2008.

A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and
A. Shvartsman. Eventually-serializable data services.
Theoretical Computer Science, 220(1), 1999.

B. Fitzpatrick. Memcached: a distributed memory
object caching system. http://www.danga.com/
memcached/, 2009.

Flickr. Flickr phantom photos. http://flickr.
com/help/forum/33657/, Feb. 2007.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
file system. In SOSP, Oct. 2003.

D. K. Gifford. Weighted voting for replicated data. In
SOSP, Dec. 1979.

A. Gupta, B. Liskov, and R. Rodrigues. Efficient routing
for peer-to-peer overlays. In NSDI, Mar. 2004.

J. V. Guttag, J. J. Horning, and J. M. Wing. Larch in five
easy pieces. Technical Report 5, DEC Systems Research
Centre, 1985.

J. Heidemann and G. Popek. File system development
with stackable layers. ACM Trans. Comp. Sys., 12(1),
Feb. 1994.

J. Hendricks, G. Ganger, and M. Reiter. Low-overhead
Byzantine fault-tolerant storage. In SOSP, Oct. 2007.

M. Herlihy. A quorum-consensus replication method for
abstract data types. ACM Trans. Comp. Sys., 4(1), Feb.
1986.

M. P. Herlihy and J. M. Wing. Linearizability: A cor-
rectness condition for concurrent objects. ACM Trans.
Program. Lang. Sys., 12(3), 1990.

http://httpd.apache.org/
http://httpd.apache.org/
http://www.circlemud.org/~jelson/software/tcpflow/
http://www.circlemud.org/~jelson/software/tcpflow/
http://code.google.com/p/the-cassandra-project/
http://code.google.com/p/the-cassandra-project/
http://www.facebook.com/note.php?note_id=23844338919
http://www.facebook.com/note.php?note_id=23844338919
http://www.danga.com/memcached/
http://www.danga.com/memcached/
http://flickr.com/help/forum/33657/
http://flickr.com/help/forum/33657/

(33]

(34]

(35]

(36]
(371

(38]

(39]

[40]

[41]

[42]

[43]

[44]
[45]
[46]
[47]
(48]

[49]

(50]

(51]

(52]

(53]

[54]

[55]

(561

D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on
the World Wide Web. In STOC, May 1997.

J. Karlin, S. Forrest, and J. Rexford. Pretty Good BGP:
Improving BGP by cautiously adopting routes. In ICNP,
Nov. 2006.

J. Kistler and M. Satyanarayanan. Disconnected opera-
tion in the Coda file system. ACM Trans. Comp. Sys., 10
(3), Feb. 1992.

E. Kohler. Tamer.
tamer/, 2009.

R. Kotla and M. Dahlin. High-throughput Byzantine fault
tolerance. In DSN, June 2004.

R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine fault tolerance. In SOSP,
Oct. 2007.

L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. [EEE Trans.
Comput., 28(9), Sept. 1979.

L. Lamport. Using time instead of timeout for fault-
tolerant distributed systems. ACM Trans. Program. Lang.
Sys., 6(2), 1984.

L. Lamport. The part-time parliament.
Comp. Sys., 16(2), 1998.

L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. ACM Trans. Program. Lang. Sys., 4
(3), 1982.

D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda.
Trinc: small trusted hardware for large distributed sys-
tems. In NSDI, Apr. 2009.

J. Li and D. Mazieres. Beyond one-third faulty replicas
in Byzantine fault tolerant systems. In NSDI, Apr. 2007.
J. Li, M. N. Krohn, D. Mazieres, and D. Shasha. Secure
untrusted data repository (SUNDR). In OSDI, Dec. 2004.
D. Malkhi and M. Reiter. Byzantine quorum systems. In
STOC, May 1997.

A. Muthitacharoen, B. Chen, and D. Mazieres. A low-
bandwidth network file system. In SOSP, Oct. 2001.
NIS95. FIPS Publication 180-1: Secure Hash Standard.
Natl. Institute of Standards and Technology, Apr. 1995.
F. E. Notes. Needle in a haystack: efficient storage of
billions of photos. http://www.facebook.com/
note.php?note_id=76191543919, 2009.

B. M. Oki and B. H. Liskov. Viewstamped replication: a
general primary copy. In PODC, 1988.

K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and
A. Demers. Flexible update propagation for weakly con-
sistent replication. In SOSP, Oct. 1997.

L. Poole and V. S. Pai. ConfiDNS: Leveraging scale
and history to improve DNS security. In WORLDS, Nov.
2005.

D. Pritchett. BASE: An ACID alternative. ACM Queue,
6(3), 2008.

Quova. http://www.quova.com/, 2006.

M. O. Rabin. Fingerprinting by random polynomials.
Technical Report TR-15-81, Harvard Aiken Computation
Laboratory, 1981.

R. Rodrigues, M. Castro, and B. Liskov. BASE: Using ab-
straction to improve fault tolerance. In SOSP, Oct. 2001.

http://read.cs.ucla.edu/

ACM Trans.

16

[57]
(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

RouteViews. http://www.routeviews.org/, 2006.

F. B. Schneider. Implementing fault-tolerant services us-
ing the state machine approach: a tutorial. ACM Com-
puter Surveys, 22(4), Dec. 1990.

A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, and
P. Maniatis. Zeno: eventually consistent byzantine-fault
tolerance. In NSDI, apr 2009.

TechCrunch. Facebook source code leaked.
http://www.techcrunch.com/2007/08/
11/facebook—source—code-leaked/,
2007.

F. Travostino and R. Shoup. eBay’s scalability odyssey:
Growing and evolving a large ecommerce site. In LADIS,
Sept. 2008.

B. Vandiver, H. Balakrishnan, B. Liskov, and S. Mad-
den. Tolerating Byzantine faults in database systems us-
ing commit barrier scheduling. In SOSP, Oct. 2007.

D. Wendlandt, D. G. Andersen, and A. Perrig. Per-
spectives: Improving SSH-style host authentication with
multi-path probing. In USENIX Annual, June 2008.

B. Wester, J. Cowling, E. B. Nightingale, P. M. Chen,
J. Flinn, and B. Liskov. Tolerating latency in replicated
state machines through client speculation. In NSDI, Apr.
2009.

T. Wood, R. Singh, A. Venkataramani, and P. Shenoy. ZZ:
Cheap practical bft using virtualization. Technical Report
TR14-08, University of Massachusetts, 2008.

Yahoo! Hadoop Team. Zookeeper. http://hadoop.
apache.org/zookeeper/, 2009.

J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for
Byzantine fault tolerant services. In SOSP, Oct. 2003.

Aug.

http://read.cs.ucla.edu/tamer/
http://read.cs.ucla.edu/tamer/
http://www.facebook.com/note.php?note_id=76191543919
http://www.facebook.com/note.php?note_id=76191543919
http://www.techcrunch.com/2007/08/11/facebook-source-code-leaked/
http://www.techcrunch.com/2007/08/11/facebook-source-code-leaked/
http://hadoop.apache.org/zookeeper/
http://hadoop.apache.org/zookeeper/

	Introduction
	Motivating Prophecy's Design
	Traditional BFT Services and Real Workloads
	BFT Internet Services
	Applications

	System Design
	The Sketcher
	D-Prophecy
	Prophecy
	Handling a Request

	Performance

	Consistency Properties
	Delay-once Linearizability
	Prophecy's Consistency Semantics

	Scale and Complex Architectures
	Implementation
	Evaluation
	Experimental Setup
	Null Workload
	Server Processing Time
	Integration with Apache Webserver
	Response Size
	Session Length
	Scaling Out

	Measurement Study of Alexa Sites
	Frequency of Transitions
	Characterizing Dynamic Data
	Site-Based Analysis

	Related Work
	Conclusions

