Rolis: A software approach to efficiently replicating
multi-core transactions

Weihai Shen Ansh Khanna Sebastian Angel
Stony Brook University Stony Brook University University of Pennsylvania
and Microsoft Research
Siddhartha Sen Shuai Mu
Microsoft Research Stony Brook University
Abstract ACM Reference Format:

This paper presents Rolis, a new speedy and fault-tolerant
replicated multi-core transactional database system. Rolis’s
aim is to mask the high cost of replication by ensuring that
cores are always doing useful work and not waiting for each
other or for other replicas. Rolis achieves this by not mix-
ing the multi-core concurrency control with multi-machine
replication, as is traditionally done by systems that use Paxos
to replicate the transaction commit protocol. Instead, Rolis
takes an “execute-replicate-replay” approach. Rolis first spec-
ulatively executes the transaction on the leader machine, and
then replicates the per-thread transaction log to the follow-
ers using a novel protocol that leverages independent Paxos
instances to avoid coordination, while still allowing follow-
ers to safely replay. The execution, replication, and replay
are carefully designed to be scalable and have nearly zero co-
ordination overhead across cores. Our evaluation shows that
Rolis can achieve 1.03M TPS (transactions per second) on the
TPC-C workload, using a 3-replica setup where each server
has 32 cores. This throughput result is orders of magnitude
higher than traditional software approaches we tested (e.g.,
2PL), and is comparable to state-of-the-art, fault-tolerant,
in-memory storage systems built using kernel bypass and
advanced networking hardware, even though Rolis runs on
commodity machines.

CCS Concepts: - Computer systems organization — Re-
liability.

Keywords: distributed systems, concurrency, multicore

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys "22, April 5-8, 2022, RENNES, France

© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-9162-7/22/04...$15.00
https://doi.org/10.1145/3492321.3519561

Weihai Shen, Ansh Khanna, Sebastian Angel, Siddhartha Sen, and Shuai
Mu. 2022. Rolis: A software approach to efficiently replicating multi-
core transactions. In Seventeenth European Conference on Computer
Systems (EuroSys *22), April 5-8, 2022, RENNES, France. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3492321.3519561

1 Introduction

Transactional storage systems are a key backend component
in large-scale online services. They typically come in two
flavors: single-machine multi-core databases [20, 21, 24, 38],
and distributed and replicated databases [7, 30, 37, 45]. The
former tend to be faster and achieve higher throughput ow-
ing to the lack of coordination across machines, while the
latter achieve important properties such as the ability to
continue operating in the presence of crash failures. Recent
works [5, 10, 15, 18, 35, 36] attempt to bridge this perfor-
mance gap by combining multiple machines to achieve fault
tolerance, with multiple cores per machine, each of which
operates on a different database partition, to achieve high
throughput. Despite this progress, we find that they still
fall short of the performance achieved by single-machine
multi-core databases, owing to the cross-replica coordination
needed by distributed transactions.

This paper explores the following research questions: can
we significantly improve the throughput of replicated trans-
actions (the bottleneck in making distributed databases per-
form as fast as multi-core ones) with a more clever coordi-
nation protocol between a multi-core leader and its multi-
core replicas? And can this protocol finally close the gap
between single-machine multi-core and fault-tolerant dis-
tributed databases? Our proposed system, Rolis, answers
both questions affirmatively. Perhaps surprisingly, Rolis’s
approach to managing and delegating work between a multi-
core leader and its multi-core replicas achieves higher through-
put than recent works that rely on advanced networking
hardware and kernel bypass [5, 10, 18, 36, 41], even though
Rolis runs on commodity servers.

Our main idea is to start with a well-known principle: if
one maximizes the pipeline of transaction processing and
replication by having more transactions outstanding, the

https://doi.org/10.1145/3492321.3519561
https://doi.org/10.1145/3492321.3519561

long latency of distributed coordination protocols is roughly
masked and the system can achieve similar throughput as
a non-replicated transactional system. Of course, just be-
cause a principle is well-known does not mean that it can
be applied easily. Many designs of distributed transaction
systems cannot simply increase the number of outstanding
transactions, as this significantly degrades performance. The
main reason for this is that the replication protocol is closely
tied to the transaction execution and commit protocols. For
example, Google’s Spanner [7] applies Paxos to replicate the
critical steps in two-phase locking and two-phase commit;
increasing the number of outstanding transactions will not
improve the system’s performance, but will instead cause
more aborts by increasing the chance of conflicting accesses.
More recent protocols like Calvin [37] and Janus [30] par-
tially overcome this limitation, but still fall short of achieving
the performance of a single multi-core transactional store.

Rolis’s key contribution finds a way out of this conundrum.
Rolis uses a combination of speculation and deterministic
replay to ensure that we can increase the number of outstand-
ing transactions—maximizing the pipeline and masking the
cost of distributed coordination protocols—without causing
more aborts. In more detail, Rolis first speculatively executes
all transactions on the leader. Then, each thread of the leader
creates an independent Paxos stream and uses it to replicate
its transaction logs, including the serialization order, to a
corresponding thread at each follower. Finally, the follow-
ers deterministically replay the logs to arrive at the same
state. The main technical difficulties that Rolis overcomes
are: (1) how to design a replication protocol that allows each
Paxos stream to work independently without coordinating
with each other, and without having more outstanding trans-
actions cause aborts; (2) how to replay transactions at the
followers to ensure that they can keep pace with the leader;
and (3) how to ensure that leader failures do not leave the
different Paxos streams in an inconsistent state.

This paper addresses the above challenges and makes the
following contributions:

e Identifies the performance gap between distributed trans-
action systems and multi-core transaction systems that
cannot be remedied by merely increasing the number of
outstanding requests in traditional approaches.

e Introduces a novel watermark tracking method to elimi-
nate coordination between independent Paxos streams.
This watermark is also used for visibility control and safe
deterministic replay at followers.

e Describes an implementation and evaluation of Rolis run-
ning on a 3-replica setup with 32-core Azure servers that
can process 1.03M TPC-C transactions/sec. This through-
put is an order of magnitude higher than prior distributed
transaction protocols on commodity machines, and it is
competitive with recent systems that rely on kernel by-
pass and RDMA NICs.

The major limitation of Rolis is that it does not (yet) sup-
port sharding. While we would like to support a system that
scales linearly with more shards, we find that Rolis’s through-
put, with a single shard, is already equivalent to a system
with ~1,000 shards, and should suffice for many applications.

2 Overview
2.1 Background

Setup. In this paper, we study the replication of multi-core
transactions. We describe our design and implementation in
the context of a key-value storage system, but our design
can also apply to other settings, e.g., relational databases
and software transactional memory systems. In our setup, a
transaction includes multiple read, write, and range query
operations that may access different keys. Concurrent trans-
actions that access overlapping keys are isolated, replicated
consistently, and obey their real-time order, i.e., transactions
are strictly serializable [14, 34].

Consensus and replication. We assume an asynchronous
network: messages can be arbitrarily delayed and there is no
perfect failure detector that can detect or force a failure in the
system. The standard way to achieve consistent replication
in an asynchronous network is through consensus proto-
cols such as Paxos [22] or Raft [32]. The standard interface
of consensus-based replication is state machine replication
(SMR): replicate a sequence of operation logs to all repli-
cas and then have each replica deterministically apply the
operations in those logs in the same order.

Distributed transactions. The de facto approach for dis-
tributing and replicating a transaction across different servers
is to use consensus protocols to replicate the critical steps
in the transaction execution and commit protocols. Google
Spanner, for example, uses two-phase commit (2PC) as a
transaction commit protocol and uses Paxos to replicate the
critical steps of 2PC, as shown in Figure 1. Other systems
may have differences in the protocols they choose, but they
all share an important similarity with Spanner: the replica-
tion happens side-by-side with the transaction execution
and/or commit. That is, replication happens before the trans-
action’s serialization order is determined by the transaction
execution/commit protocol.

2.2 Problem statement and strawman

In this paper, we wish to answer the question: can we signif-
icantly improve the throughput of a replicated transactional
key-value store that leverages the many cores available in
today’s servers, with a more clever coordination protocol
between a leader and its replicas?

To answer this question, we start by analyzing a simple
strawman that separates replication and transaction exe-
cution/commit. In this strawman, a multi-core leader first
executes and serializes all transaction requests into a log,

A partition is represented as a 8& @ %
Paxos stream, a majority of the ® o)

nodes should be available
@

Coord. | Par #1 II
Par #2 II
Par #3 \ /

(O Client sends 2PC prepare
logs to Paxos leaders

(® Replicas acknowledge 2PC
coordinator they’re prepared

® 2PC coordinator sends 2PC commit logs (© Paxos leaders replicates commit
to other Paxos leaders and the client logs to a majority of replicas

g

H

(2) Paxos leaders replicate prepare
logs to a majority of replicas

(@ 2PC coordinator commits locally

Figure 1. Two-phase commit and replication in Spanner [7].
There are three partitions: one serves as a coordinator, the
others two as participants.

and then uses MultiPaxos to replicate the log to all repli-
cas. When the replication is complete, the leader responds
to clients. Each replica then deterministically executes the
transactions in the log. Replicas are optimized to use mul-
tiple threads to replay the log, which is discussed in more
detail in Section 3.4.

Figure 2 shows the performance of this strawman repli-
cated database on the TPC-C benchmark. It is able to achieve
over 0.42 million transactions/sec, which is already sub-
stantially higher than a single shard in traditional replicate-
before-commit approaches. However, throughput plateaus
after the leader and replicas use more than ~10 threads. The
bottleneck is the single MultiPaxos instance, which we refer
to as a Paxos stream. All threads on the leader need to write
to this Paxos stream, and will thus be bottlenecked by the
thread synchronization cost and the replication rate of the
Paxos stream. Specifically, when the CPU is fully utilized
under a high contention workload with 30 threads, the en-
queue function (adding outstanding log entries) of the Paxos
stream accounts for 68.7% of CPU time.

2.3 Challenges and high-level idea

A potential solution to the aforementioned bottleneck is to
use more than one Paxos stream. For example, each thread
could get its own stream. There are, however, two challenges
with using multiple Paxos streams. First, with a single stream
we can rely on the natural order of the requests in the stream
as the serialization order of transactions, and all replicas
can simply follow that order. With more than one stream,
requests across streams are not ordered relative to each other,
so we need to find another way to ensure that all replicas
execute transactions in the same order.

To address this issue, Rolis adopts an execute-replicate-
replay model. First, we have one replica (the leader) execute

—#®— one Paxos Stream

0.40M

0.35M

0.30M

0.25M

Throughput (txns/sec)

0.20M

0.15M

2 6 10 14 18 22 26 30
of threads

Figure 2. Throughput of the TPC-C benchmark in a 3-replica
setting with single Paxos stream replication.

transfer 100 $ '&

tx1: not replicated

Alice Bob

tx2: replicated
Charlie

Figure 3. A transitive transaction: ¢x1 fails to be replicated
and tx2 succeeds to be replicated, but tx2 depends on tx1.

and “commit” the transaction locally as if no replication
were to take place, except that the commit is held back from
writing real values into the database. Rolis uses the commit
operation to determine a serialization order among trans-
actions, which will be captured through a monotonically
increasing hardware counter that is available on commodity
machines. This timestamp will be encoded into each log and
will be used to order requests across different Paxos streams.
As we will see, this timestamp can be used to determine
dependencies between transactions without the need for
coordination among threads.

The second problem is more subtle and difficult to solve. It
relates to the failure recovery of the Paxos streams. Suppose
that each Paxos stream is independent and therefore recovers
independently of the other streams. This could lead to a
situation where transactions that are ordered early in the
serialization order are lost in recovery, but transactions that
are ordered later in the serialization order are preserved. We
give an example of this behavior in Figure 3.

Consider two transactions tx1 and tx2. In tx1, Alice trans-
fers $100 to Bob; in tx2, Bob transfers $100 to Charlie. tx1
happens before tx2 in the leader’s execution. ¢tx1 is replicated
by thread-1 in stream-1 and tx2 by thread-2 in stream-2. If
there is a failure, a possible outcome for the two indepen-
dent Paxos streams is that stream-1 recovers with tx1 not
replicated, and stream-2 recovers with tx2 replicated. In this
case, if replicas only replay tx2’s transaction, the system will
be in an incorrect state, where Alice never transferred her
money out but Charlie received an extra $100.

To address this issue, we need some way to track the de-
pendencies between transactions to make sure that, during

failure recovery, transactions with missing dependencies are
not replayed—e.g., in the above example, tx2 should not be
replayed. This is unfortunate, since our initial goal was to
avoid all coordination between threads. Nevertheless, we
devise a low overhead mechanism for tracking dependencies
that preserves the system’s performance. In the context of
multi-core transactional systems, low-overhead coordination
is well known to be a challenging problem [24, 36]. Rolis’s
innovation is the use of a lightweight mechanism to track de-
pendencies based on the idea of keeping a watermark across
all Paxos streams (threads). The watermark is effectively a
boundary for replay visibility. All threads will synchronize
periodically (with a frequency that does not affect perfor-
mance) to advance the watermark. All transactions that fall
within the watermark are safe to replay, and those beyond
the watermark are unsafe to replay. We discuss the details of
this and other components of Rolis in the following sections.

3 Main System Design

This section describes the main design of Rolis. First, we
overview the architecture of Rolis, including its major com-
ponents and workflow. Then, we describe each stage of the
workflow in more detail.

3.1 Architecture

Rolis has two major building blocks that we use (almost)
as opaque boxes: a multi-core in-memory high-speed trans-
actional database, and a consensus-based replication layer.
Our design is generic and is not tied to specific choices for
these building blocks. In our implementation, we choose
to use Silo [38] as the local database; other options such
as ERMIA [20] and Cicada [24] are applicable as well.! Silo
is a speedy in-memory database that is fast and has good
multi-core scalability. It uses an optimized optimistic concur-
rency control scheme to execute and commit transactions.
We adopt Silo’s design and interface that the client (appli-
cation) and database are in the same OS process. For the
consensus-based replication, we implemented MultiPaxos
following the description given in Chubby [4].

Figure 4 shows the architecture of Rolis. Each replica can
run either as a leader or as a follower. Only a leader can
accept new transaction requests. A transaction is first exe-
cuted on the leader replica, where it is guaranteed isolation
from other transactions. The execution will generate a log
entry for the transaction, which is assigned a globally unique
timestamp that represents the serialization order of the trans-
action (§3.2). Then, the log entry is replicated to the followers
via the replication layer (§3.3). To avoid the scalability bottle-
neck, the replication layer has multiple Paxos streams, each
of which is dedicated to a worker thread in the database.

!When using non-strictly serializable databases such as Cicada [24], the
isolation guarantee of Rolis downgrades to that of the local database.

.& Paxos stream-i = Paxos leader-i +

Paxos follower-i on all follower replicas
Database
workers

Replicated
storage
worker-i sends submitted

real-time replay with
transactions to Paxos leader-i watermark control

Execution layer

Replication layer

Paxos Paxos

leader-i follower-i

submit logs to the Paxos stream-i

Figure 4. Rolis’s architecture. There are multiple database
workers on the leader replica and each worker has a sep-
arate Paxos stream. In this example there are two replicas
(one leader plus one follower) and each replica runs a local
instance of Rolis.

The Paxos streams are independent from each other in their
replication and need not coordinate between them.

When the log entry is replicated to enough followers and
is considered durable by the replication layer, the followers
will replay the log entry. A follower sees multiple Paxos
streams, and replays the log entries in a scalable manner us-
ing multiple database threads, ensuring that they are applied
in the same order as on the leader (§3.4). We also design a
novel scheme (§4.1) to ensure that replay is safe against fail-
ures, so that data inconsistencies such as the one described
earlier cannot occur. Once the leader confirms that the trans-
action’s log entry will be replayed—that is, the leader does
not need to wait for the actual replay—the leader can release
the transaction’s results to the client.

3.2 Executing transactions on the leader

Transactions enter the system following the original data-
base’s (Silo’s) paths, and they are executed up to their commit
point in Silo. For completeness, we briefly discuss how Silo
works. In Silo, all worker threads are egalitarian and work in
a shared memory. A thread starts a transaction and executes
it until it finishes. Silo has the standard transaction interfaces
consisting of start, read, write, and end. Figure 5 shows an
example of these interfaces.

Silo executes transactions using OCC (Optimistic Con-
currency Control). During transaction execution, all the
reads will record the current versions, and all the writes
are buffered in a thread-local workspace. During transac-
tion commit, the worker thread will first (spin-)lock all the
keys in the write-set, and then it will validate that the keys
in the read-set have not been updated by conflicting trans-
actions, by comparing the most recent versions with the
recorded versions. If the validation passes, the transaction
will commit and all locks are released. If the validation fails,
the transaction will abort and then retry.

void *txn = db->new_txn() ; // start a transaction
void *table = db->table_instance() ;

int account_alice = table->get("Alice"); //read a key

int account_bob = table->get('Bob") ;

assert(account_alice >= 100) ;

table->put("Alice", account_alice - 100); // write a key
table->put("Bob", account_bob + 100) ;

db->commit_txn(txn) ; // end a transaction

Figure 5. An example of transaction interfaces: Alice trans-
fers $100 to Bob using transaction start, read, write and end
interfaces.

We make two modifications to Silo. First, if the validation
passes, the worker thread will call the timestamp counter
instruction, rdtscp, to obtain a timestamp, before it un-
locks the keys in the write-set. The timestamp obtained from
rdtscp is monotonically increasing on each core and is syn-
chronized across cores?. The performance of the rdtscp
counter is not a scaling bottleneck for modern OLTP work-
loads [35], and the overhead is negligible compared to the
serialization of transactions. We use this instruction to gener-
ate ordered timestamps across threads on the same machine.
The timestamp represents a serialization order between con-
flicting transactions, which the system will utilize to detect
dependencies in later replays. In rare cases, two concur-
rent transactions on different threads may obtain the same
timestamp. This is still safe as the two transactions must be
non-conflicting, otherwise they would have been blocked
from obtaining the timestamp by each other’s locks in Silo.
After unlocking the write set, the worker thread generates
the log for replication, which contains the keys and values
of the write set.

For each transaction, Rolis includes each of the modified
key-value pairs, but not their individual access times (which
Silo uses to keep track of conflicts). Instead, Rolis creates a
header for the entire transaction, as shown in Figure 6. This
header includes the transaction’s timestamp (from rdtscp),
the epoch number (§3.3), the number of key-value pairs in-
cluded in the transaction, and the total number of bytes. This
information is sufficient to facilitate replay in the follower
replicas. To further reduce the overhead of network process-
ing (e.g., interrupts), Rolis batches many transactions (e.g.,
1000 transactions in our implementation) into a single log
entry. We use the timestamp from the last transaction in the
batch to represent the timestamp of the corresponding log
entry; this timestamp is compared against the watermark
during replay (§3.4).

2Synchronization across cores requires CPUs to support constant_tsc
and nonstop_tsc features. Synchronization across sockets requires further
support from the motherboard, or can be enforced manually. We use a single
socket in our implementation.

Transaction Transaction
LOg RN EEREEE)
(write-set) (write-set)

Shared header

Key-value pairs —

len of pairs \ ------

Timestamp
(epoch)

‘ # of pairs

Figure 6. Decomposition of batched logs: each log entry
contains several transactions and each transaction maintains
the shared header and key-value pairs.

The second change we make is holding the worker thread
from releasing commit results to the clients until the replica-
tion finishes. We use a watermark to control this. Only the
results of transactions whose timestamps are smaller than
the watermark can be safely released to the clients; transac-
tions whose timestamps are greater than the watermark are
still speculative. Section 3.4 explains how the watermark is
designed and how it grows so that it is not a bottleneck in
the system.

Note that while the worker thread holds off on releasing
results to the clients, the thread can still process new requests.
In this way, the throughput of the system is preserved and
only latency is affected. This introduces another problem
in our system design. Since Rolis runs at a high throughput
(over a million TPS), there will be (tens of) thousands of trans-
actions whose execution is speculative. In the common case,
this is acceptable, because the leader is stable most of the
time and the speculative executions will eventually commit.
In the worst case, the speculatively executed transactions
need to be abandoned. Standard speculative approaches use
undo logs to roll back, but in our case, logging undo logs and
rolling back thousands of transactions is too costly. Instead,
we take a simpler approach. When an old leader rejoins after
a crash, it will drop the inconsistent state and join as a new
replica (see more discussion in Section 4.3).

3.3 Replicating with multiple Paxos streams

Rolis utilizes multiple Paxos streams, based on the intuition
that associating each database worker thread with a sep-
arate Paxos stream will allow us to maximize scalability
while minimizing cross-core synchronization. In general,
state machine replication (e.g., Paxos [22] and Raft [32]) is a
poor match for multi-core scalability, because SMR usually
requires a sequential ordering of all operations. In our imple-
mentation, we use the same number of Paxos streams and
database worker threads, and then pair each Paxos stream
to a database worker. Each Paxos stream only needs to deal
with transactions from its associated database worker.
Each Paxos stream receives a log entry from its database
worker and replicates the log entry to at least a majority
of replicas. After that, the log entry is durable, i.e., the sys-
tem can recover the log entry from healthy replicas despite a

minority of replica failures. Each Paxos stream reaches agree-
ment independently of the other streams, and thus avoids
the cost of coordinating across cores. The leader replica exe-
cutes transactions speculatively, which are then replicated
using each worker’s corresponding Paxos stream. Each Paxos
stream’s log extends progressively with strictly increasing
timestamps. Since each Paxos stream on the follower replica
has a correct partial order, we can progressively mark con-
sistent snapshots and replay them asynchronously on the
followers. In the following section, we describe this replay
mechanism in detail.

In order to make it possible to compare timestamps gen-
erated by different leaders after a failover, our Paxos imple-
mentation uses a monotonically increasing epoch number
to distinguish a new leader when there is a leader change.
This epoch-based method for distinguishing leaders is widely
used in consensus algorithms, e.g., it is similar to the term
number in Raft. Together, <epoch, timestamp> forms a pair
that we can use to serialize all transactions.

3.4 Replaying transactions on followers

When a new log entry is durable in the Paxos stream, a
follower cannot replay the entry just yet, since this might
lead to the inconsistencies discussed in Section 2.3. Instead,
we use a watermark scheme to enable safe replay. We avoid
the use of explicit dependency tracking [1, 2, 11] for two
reasons: (1) explicit dependency tracking (i.e., maintaining a
dependency graph) typically involves more expensive and
complicated protocols compared to our simple watermark
tracking; and (2) explicit dependency tracking may result in
cycles, which ultimately result in higher tail latencies [2]. We
avoid using a lock-based replay strategy for similar reasons.
A lock-based strategy needs to enforce the same lock and
unlock ordering recorded on the leader, which essentially
requires fine-grained dependency tracking, as in Rex [13].

The watermark tracking works as follows. Recall that we
define the timestamp of a log entry to be the timestamp of the
last transaction in that log entry. Suppose we have n Paxos
streams 1, 2, ..., n, for an epoch e, and the most recent durable
timestamp of log entries in this epoch is tsy, ts, ..., ts, on a
replica. Then the watermark W, on this replica is:

W, = min(tsy, tsa, ..., tSp)

If a log entry in epoch e has its timestamp smaller than W,
all transactions in this log entry are safe from failures. For a
leader replica, it is safe to release results corresponding to
these transactions to the client. For a follower replica, these
transactions are safe to replay. The replay happens as follows.
Similarly to transaction execution on the leader, each Paxos
stream has a corresponding replay thread. The thread will
replay the log entries below the watermark from the stream
sequentially. When replaying a transaction, the replay thread
will do “compare-and-swaps”: it compares the transaction’s
epoch/timestamp (found in the transaction’s header) against

Pl 1 12 24 34 42 59 60 82 8 84 85
p2 3 7 27 44 46 57 61 78 @ 80

P3 4 8 26 | 41 45 | 55 | 62 74 |75

P4 2 9 21 47 48 53 63 73

P5 5 11 23 50 52 67 69 170

"— durability committed logs —+

Figure 7. Example of logs replicated by five Paxos streams.
Logs in the same color are computed within the same interval
(0.5ms). Each entry shows the timestamp of the log.

those of the keys in the database, to determine if the database
should be updated. If a key in the database has a smaller
<epoch, timestamp> than the transaction to be replayed,
then the thread will update the database to the newer one,
including the value, epoch, and timestamp. Otherwise, the
thread does nothing and moves on to the next key. In this way,
all worker threads can replay their logs concurrently, while
ensuring that the latest state is reflected in the database. In
our design, we assume that the compare-and-swap is atomic;
how this can be done is discussed in Section 5.

The watermark calculation can be done asynchronously
with respect to the log replication. That is, an outdated wa-
termark does not affect safety, because the watermark is
always growing and a transaction is always safe to replay
once the watermark is beyond the transaction’s timestamp.
This enables two aspects of our design that make the imple-
mentation easier. First, each replica can calculate its water-
mark independently without any external communication.
Second, the system does not need to calculate W, instantly
each time it is accessed, which would incur synchronization
across threads. Instead, we calculate W, periodically, e.g.,
every 0.5ms as in our evaluation.

Example. Figure 7 shows the logs durability committed by
five Paxos streams within the same epoch in the first 1.5ms,
when W, is updated at 0.5ms intervals. Rolis advances the
watermark from 8, to 44, to 70 at the corresponding intervals.
Note that the watermark calculation always happens within
the same epoch: each epoch has its own watermark tracking
and the system is not allowed to advance the watermark
across two different epochs. During an epoch (leader) change,
the transactions in the previous epoch may not be safe to
replay due to failures. We discuss this further in Section 4.1.

3.5 Areview of stages in Rolis

One way to look at Rolis is that it separates the “commit
points” of transaction processing and consensus process-
ing. We would like to clarify these different commit points,

because the building blocks we rely on have their own defini-
tions of commits, which can be confusing when comparing
Rolis to its peers. In fact, in Rolis, there are three separate
commiit points: in the in-memory database, in the replication
layer, and in the overall system.

The first commit point is in the in-memory database (Silo),
where the serialization point of the transaction is specula-
tively determined, which we can refer to as execution commit.

The second commit point is in a Paxos stream, where a log
is accepted by a majority of replicas and considered durable,
which we can refer to as durability commit.

The third commit point is when the watermark grows
beyond a transaction, so it is safe to release the transaction’s
results and replay it, which we can refer to as release commit.

These commit points occur at the execution stage, repli-
cation stage, and replay stage, respectively. Note that the
release commit is the real commit point of a transaction; the
execution commit and durability commit are not. A trans-
action can be both execution and durability committed, but
aborted by the system in the end.

4 Availability

In this section, we discuss how our protocol guarantees fault
tolerance without sacrificing either correctness or availabil-
ity. Rolis needs 2f + 1 replicas to tolerate f failures. Rolis’s
Paxos implementation is standard and resembles traditional
Paxos systems (e.g., Chubby [3]); we give a brief review here.

Rolis runs an election module on all replicas, which peri-
odically send and receive heartbeats to maintain the leader’s
liveness in case of machine failures or network partitions.
Each replica maintains a single epoch number that indicates
the round of election. The follower replicas wait for a time
interval, and if no heartbeat is received within this interval,
they declare the leader replica as failed and trigger a new
election round that increments the epoch number. When a
new leader is elected, it first learns all submitted transactions
that are durable from the old epoch. Then, a watermark will
be computed to determine the boundary between release
committed transactions and abandoned transactions (see ex-
ample in Figure 8). After that, the new leader can receive
requests from the application and commit them as normal.

In our Paxos implementation, we use an optimization that
prevents a log entry from committing until all previous log
entries in the same stream have committed. That is, each
stream is always growing sequentially. This simplifies our
design because the replay process does not need to deal with
any “holes” in the stream where a later log entry commits
before an earlier entry.

4.1 Replay under failures

Using multiple Paxos streams to support high throughput
raises two challenges for correctness. First, as transactions
have dependency relationships, Rolis needs to determine

I old epoch |

new epoch

P1 1 12 24 34 no-ops 1 11 | 23

P2 3 7 21 | no-ops 3 013 | 20

P3 4 8 26 41 no-ops 7 21 | 26

P4 2 9 21" no-ops 4 8 | 33 o
P22

P5 5 1 23 no-ops 5 9 | 31
lost log entry

Figure 8. An example of failover: durability committed logs
in five Paxos streams during a failure. Each entry shows the
timestamp of the log.

when and if a transaction can be replayed safely. Second, the
Paxos streams on the new leader replica might not have the
latest durability-committed transactions locally.

To discuss this in more detail, once a new leader replica
has been elected, all Paxos streams on the new leader will
start bringing themselves up to date by retrieving any miss-
ing durability-committed transactions from other replicas.
Then, the new leader commits a no-op in each Paxos stream
to end the old epoch, after which it can calculate the lat-
est watermark W, based on timestamps from the old epoch.
Then, Rolis can safely replay all transactions up to W,. Im-
portantly, Rolis can skip transactions above W, in the old
epoch, which is safe for two reasons. First, those transac-
tions have never been executed on other follower replicas
due to our watermark scheme. Second, Rolis never releases
the results of those transactions to clients on the old leader,
or any replica. In effect, the watermark represents the vis-
ibility boundary to clients. After replaying transactions in
the old epoch, the new leader re-initializes the watermark
to continue processing in the new epoch.

Example. Figure 8 shows an example of 5 Paxos streams,
where all transactions have been durability committed. The
timestamps are monotonically increasing in the same epoch
within each Paxos stream. Whenever a replay thread sees a
no-op, it immediately realizes that membership has changed
and then waits for all other replay threads to receive no-
ops as well. Once all replay threads observe no-ops, Rolis
advances the latest watermark W, to 21 (the smallest times-
tamp among: 34, 27, 41, 21, 23) in the old epoch. All replay
threads have to replay transactions up to 21, and must skip
all remaining transactions (the underlined entries) as they
might depend on other transactions that have not durability
committed yet. For example, the log entry with timestamp
22 might not have durability committed yet in Paxos stream
P4, and will be lost if a failure occurs. If the system replays
log entries with timestamps 26 and 41 from Paxos stream
P3, the system may become inconsistent because log entries
with timestamp 26 and 41 might depend on the lost entry.

Once all replay threads succeed in replaying and skipping
transactions in the old epoch, the new leader proceeds as
normal in the new epoch (§3.4).

4.2 Correctness

We have explained why our mechanisms work. Here, we
give a brief review and explain why Rolis guarantees strict
serializability across failovers. We separate the discussion
into two cases, based on whether the system has replicated
all proposed log entries in an epoch before the failover.

We first consider the simpler case when Paxos replication
has replicated all log entries in an epoch. Within the same
epoch (before a failure occurs), the leader generates a strictly
serializable execution whose serial order is captured by the
timestamps. This follows directly from Silo’s strict serial-
izability guarantees and the way Rolis assigns timestamps.
Thus, transactions with smaller timestamps must be
serialized before those with larger timestamps.

When a failure occurs, the Paxos algorithm guarantees
that all replicas see the same Paxos streams, a new leader
always has a higher epoch number than the previous lead-
ers, and the epoch numbers divide the stream into log en-
tries generated by different leaders. Transactions with a
smaller epoch number must be serialized before those
with a larger epoch number. This is guaranteed by Rolis’s
failover, because the new leader does not process requests un-
til it has replayed all transactions from the previous epochs.

Given the <epoch, timestamp> pairs, the replay process
will duplicate the final state of the execution, making the
replicas consistent with the leader, by always prioritizing
the state of transactions with larger epochs/timestamps (via
our compare-and-swap method).

We now discuss the more complex case when Paxos repli-
cation does not finish replicating all transactions in an epoch,
leaving an incomplete tail in the log stream. In this case, the
above claims still hold as long as the following premise is true:
Rolis can ensure a consistent state by stopping replay once it
hits a missing log entry, and ignoring all entries afterwards;
i.e., Rolis can replay a prefix of the original execution. In this
case, we claim that Rolis’s replay correctly preserves a
prefix of the leader’s original proposed serializable ex-
ecution of transactions. If a transaction is replayed, due
to the watermark mechanism discussed in Section 3.4, any
transaction that has a smaller timestamp has been or will be
replayed. Therefore, the replay always leads to a state that
represents a prefix of the original execution. The execution
beyond the prefix can be safely discarded because they are
never revealed to clients.

Since a new leader finishes the replay of previous epochs
before proposing new transactions, the transactions in the
new epoch will always read the latest changes.

4.3 Adding a new follower replica

In typical SMR implementations, adding a new replica usu-
ally requires a snapshot (checkpoint) of the system, which
is transmitted to the new replica to bootstrap its state. In
our case, Silo does not yet support snapshots: generating
snapshots without degrading performance in a multi-core
system is challenging, and is not supported by most state-
of-art multi-core databases we discussed. So in the spirit of
supporting more local database choices (beyond Silo) in our
design, we adopt an approach from MongoDB [47] of adding
new replicas without using snapshots. Briefly, a new replica
first chooses a follower replica as its synchronization source,
and performs an asynchronous “pull” from the source by
scanning the source’s local database, while the source is still
working. Then, the new replica will retrieve all logs from
the source and replays those logs. After that, the new replica
is up to date and can join the replication group. The key
reason why this solution works is that the log replay in Rolis
is idempotent: repeating the same log entry multiple times
does not change the system state.

5 Implementation

Compare-and-swap in replay. The compare-and-swap
operation in the replay process in §3.4 needs to be atomic.
In principle, this can be achieved by modifying the underly-
ing data structure of Silo (i.e., Masstree [28]) to support this
operation using lock-free instructions or spin-locks. This
would achieve better performance but it also requires in-
vasive changes and limits the portability of Rolis to other
systems. Instead, we take a slightly slower but more flexible
approach: wrapping the compare-and-swap as a Silo trans-
action. Although this adds overhead to the replay, the replay
is still faster than the leader’s execution in our tests, as we
explain later (§6, Figure 15).

Heartbeat with empty transactions. A small issue we
have not discussed yet is how the system commits the tail
of the log if no new log entries show up. This issue happens
when the system is idle or in the process of shutting down.
Consider the example in Figure 7, and assume we attempt to
stop the system at 1.5ms. The system cannot replay log en-
tries with timestamps above 70 and will wait forever because
no new log entries will come in, and the watermark cannot
be advanced. To solve this issue, we add a special empty
transaction in the heartbeat to every Paxos stream. These
empty transactions help the replay finish the transactions
hanging at the tail of the log.

Impact of delayed commit. In our implementation, we
chose a small enough interval (0.5ms) and a reasonable batch
size (1000 on the TPC-C benchmark) to advance the wa-
termark, which avoids having too many delayed commit
transactions accumulate in memory. In our evaluation of
the TPC-C workload, the averaged accumulated memory

is ~0.046 GB with 31 worker threads sustaining a through-
put of 1.03M TPS and median latency of 49.41 ms, with an
average log size per transaction of 875.6 bytes.

In rare cases, failures such as a network partition can stop
the watermark from advancing. In this situation, the system
still avoids memory accumulation because the partitioned or
failed replicas cannot accept new transactions from Paxos
streams, so no transactions will accumulate.

6 Evaluation

This section presents our evaluation results, focusing on
answering the following questions:

e Can Rolis preserve Silo’s performance (including its scal-
ability) in a multi-core setup?

e How does the performance of Rolis compare to that of
the state-of-art systems with advanced NIC support, and
to traditional software systems?

e How fast can Rolis recover from failures?

6.1 Experimental setup

To evaluate the multi-core scalability of Rolis, all experi-
ments were run on multiple Azure virtual machines based on
model Intel Xeon Platinum 8272CL CPU @ 2.60GHz Processor
within the same datacenter. Each machine has 32 (hyper-
threaded) CPU cores on a single socket, 128G RAM, and is
interconnected via a 16000 Mbps network. Unless otherwise
mentioned, the experiments are conducted with 3 replicas.
Each trial is run for 30 seconds, the same as Silo’s original
test configuration. Throughput and latency are calculated
based on the release committed transactions. When testing
the scalability over threads, we use the cgroups kernel fea-
ture to limit the CPU and RAM resources. In addition, we
always need 1 extra CPU core to advance the watermark
and perform leader election tasks, in the event of resource
contention with the database workers and Paxos streams.

Like prior work [37, 38, 40], we bind a workload generator
within the servers so the “clients” are running in the same
address space as Rolis. For completeness and comparison
with some baselines, however, some of our experiments add
networked clients that issue the requests remotely.

Our experiments run the TPC-C [16] and YCSB++ trans-
actional benchmarks. TPC-C is a common benchmark for
OLTP workloads. YCSB++ is a simple transactional bench-
mark derived from YCSB workload F, which consists of 50%
Reads and 50% RMW [6, 43]. The set of records for each
transaction in both benchmarks is selected uniformly from
the entire database.

Figure 9 shows the percentage and number of read/write
operations of each transaction type in TPC-C and YCSB++.
For TPC-C, we follow the official ratio for the five transac-
tion types: NewOrder (NEW), Payment (PAY), OrderStatus
(ORDER), StockLevel (STOCK), and Delivery (DLVR). We use
TPC-C to demonstrate Rolis’s performance when handling

TPC-C | NEW PAY DLVR ORDER STOCK YCSB++ READ RMW

Percent 45% 43% 4% 4% 4% Percent 50% | 50%
Get/Scan avg+23 | avg+3.6 | 50 avg+3.6 3 Get/Scan 4 4
Insert/Put | avg+24 | avg+4 180 0 0 Insert/Put 0 4

Figure 9. Workload of TPC-C and YCSB++ benchmarks.
avg+ stands for an estimated number. Also, we treat scan
and get as one read operation, and insert and put as one
write operation.

complicated transactions. For YCSB++, we have two trans-
action types: Read-Only (READ) and Read-Modify-Write
(RMW). The total data space for YCSB++ is 1 million keys
(or per partition). We perform 4 updates per RMW operation
and 4 reads per READ operation, selecting the items to ac-
cess at random. We use YCSB++ to push the limit of Rolis
with a high throughput transactional workload. The batch
sizes we use for TPC-C and YCSB++ are 1,000 and 10,000
respectively.

6.2 Performance and scalability

We first evaluate the performance and scalability of Rolis
over an increasing number of available CPU cores on TPC-C
and YCSB++. We also compare Rolis’s results to the through-
put of Silo on a single machine, i.e., without any replication.
Since Rolis is built on top of Silo, the throughput of Silo is
the upper bound of our implementation. In Figure 10 and Fig-
ure 11, we show that the throughput and per-core throughput
of Rolis on both the TPC-C and YCSB++ benchmarks are
good and scale well as we introduce more threads.

TPC-C benchmark: In Figure 10, the throughput of Rolis
at 32 cores is 1.03M TPS, which is 68.8% of Silo’s throughput.
The overhead is mainly caused by transaction (de)serialization
and memory copies in the transmission. In our implemen-
tation, Rolis needs to serialize/de-serialize 851.8 bytes of
data per transaction on average. Figure 11 shows per-core
throughput is higher during the first 15 cores, and then it
becomes stable gradually, which is the same as Silo. This de-
creasing tendency is mainly caused by several factors within
Silo itself, including increased database size and sharing of
resources such as the L3 cache.

YCSB++ benchmark: To better study the scalability of Ro-
lis for different workloads, we run an experiment on the
YCSB++ benchmark, which is much simpler than TPC-C. In
this simple but high throughput scenario, Rolis can still scale
well. The throughput using 32 cores can be up to 10.3M TPS,
which is 10x compared to the TPC-C experiment. Rolis can
retain 77.3% of the throughput of Silo on the YCSB++ bench-
mark, which is higher than the TPC-C benchmark, mainly
because YCSB++ has a smaller write-set.

1.5

14;

—=— Rolis —=— Rolis
12 Silo 11.2 Silo
0.9 8.4
0.6 5.6
03 2.8
03 g 16 2430 03 g 16 2430
of threads # of threads
(a) TPC-C (b) YCSB++

Figure 10. Throughput (million TPS in y-axis) over worker

threads on TPC-C and YCSB++ benchmark.

90y

76

20

—=— Rolis

Silo

62
48
34

600
540
480

300

—=— Rolis
Silo

420
360

2

8

16
of threads

24

30

2

8

16
of threads

24

30

(a) TPC-C (b) YCSB++
Figure 11. Per-core throughput (thousand TPS in y-axis)
over worker threads on TPC-C and YCSB++ benchmarks.

6.3 Comparison with software implementations

We now turn our attention to how Rolis compares to other
transactional key-value stores that are fault-tolerant. In this
experiment, we set the number of replicas of each partition to
3. We compare Rolis with 2PL (two-phase locking) using the
Paxos-based replication implementation in Janus [30], and
also compare with Calvin [37], which is the deterministic
concurrency control and replication algorithm implemented
in STAR [27], on the YCSB++ benchmark. See Figure 12.

2PL. 2PL is the most widely used pessimistic concurrent
control protocol. We use the implementation from Janus, a
partitioned distributed data store. Each transaction performs
4 read-write accesses or 4 read accesses by incrementing
4 randomly chosen keys. Each partition takes up 1 CPU
core for transaction execution. To minimize the extra cost
of inter-process communication, we make each transaction
only access a single partition. This gives the partitioned test
targets an extra advantage over Rolis.

Calvin. Calvin uses a central sequencer to determine the
order of batched transactions which are sent to all replicas to
execute deterministically later. We use the refined Calvin im-
plementation in STAR instead of the original one because (1)
the STAR-based implementation has a multi-threaded lock
manager instead of a single-threaded lock manager, resulting
in better CPU utilization; and (2) STAR’s implementation pro-
duces more stable and higher throughput. Neither STAR nor
the original implementation has replication enabled in their
throughput tests, as the design principle of Calvin claims that
the replication does not affect throughput. We follow this

—— 2PL

8.0M Calvin
—4&— Rolis
)
2 6.0M|
z
g
£ 4.0M|
on
=
=]
=
= 2.0M|

00M| ——0—0—0—0—0—=0
4 8 12 16 20 24 28

of partitions or threads

Figure 12. Comparisons with traditional software imple-
mentations: throughput on YCSB++ benchmark.

in our throughput test. The original Calvin implementation
has a ZooKeeper test to evaluate latency under replication.
We run this test and report the latency numbers. In term of
test setup, we pre-populate each partition with 1 million key-
value pairs before starting the experiments. To maximize
Calvin’s performance, we made two modifications in the
setup that give it more advantages. First, all transactions are
single-partitioned; there are no transactions that span parti-
tions. Second, we add 4 extra CPU cores for the multiple lock
managers and sequencer threads for each experiment run
(we are generous and do not count these additional cores dur-
ing our comparison). In Calvin, transactions are generated
in-place on the servers, similarly to Rolis.

In Figure 12, we observe that the throughput of 2PL and
Calvin scales correspondingly due to our perfectly parti-
tioned setting. However, 2PL can only achieve a throughput
of 137K with 28 partitions. The reasons are twofold: (1) 2PL’s
implementation is a client-server architecture, and (2) Rolis’s
OCC-based implementation has more advantages over the
2PL implementation due to the low contention setting. Rolis
can achieve a much higher throughput than Calvin and 2PL.
Calvin needs a central sequencer to determine the order for
a batch of transactions before they start execution, which
is expensive compared to Rolis. Similar to Calvin, 2PL also
needs intensive coordination among replicas and holds all
locks before transaction execution.

6.4 Comparison with kernel-bypass systems

We find it hard to compare to hardware-optimized systems
in a real evaluation. Many of the state-of-art systems are
not open-sourced (e.g., FaRM [10]) or depend on special plat-
form features (e.g., DITM+R [5] depends on Intel’s Restricted
Transactional Memory). Meerkat [36] is the only system we
found that runs with kernel bypass (DPDK) enabled NICs
to compare with. Meerkat targets scaling multi-core perfor-
mance in replication. It has an advanced fast quorum-based
replication and transaction protocol. The replication and

transaction execution are mixed, so it faces the same prob-
lem we pointed out that the long latency of replication may
compromise performance. Meerkat alleviates this issue by
using DPDK to reduce the message latency.

When we try to deploy Meerkat, we find that it is a good
example of why a pure software solution like Rolis would
have an advantage in maintenance and portability. In our
experience, Meerkat does not run out-of-the-box on Azure
because the RPC framework Meerkat uses, eRPC, relies on
a specific version of the NIC driver, which Azure happens
to not support. A newer version of eRPC works on Azure
without that driver, but API changes in it make it incompati-
ble with Meerkat. In short, to bring Meerkat into a running
state, we spent several extra weeks investigating the issues
and made code-level changes to upgrade the eRPC/DPDK
library in Meerkat.

For Meerkat tests, we pre-load the entire database with 1
million data items per CPU core to keep the contention level
constant as we increase the numbers of cores.

On Azure, DPDK offers a faster user-space packet pro-
cessing framework by leveraging the advantages of high-
performance NICs with FPGA. Our experiments show that
the 99.9-th percentile latency between two VMs in the same
cluster is ~30 us. Figure 13 shows that Meerkat scales to 28
threads and 2.59M TPS on the YCSB-T benchmark, which
matches the numbers reported in the Meerkat paper. Meerkat
achieves 1.22M TPS with up to 28 cores on the YCSB++ bench-
mark. In comparison, Rolis achieves up to 7x higher through-
put than Meerkat. Note, however, that Rolis uses embedded
clients while Meetkat uses networked clients, which gives
Rolis an advantage. To check how Rolis performs with net-
worked clients, we implement an (software-based, no DPDK)
open-loop networked client to issue stored procedure trans-
actions on the YCSB++ benchmark. The throughput drop
after adding networked clients is minor. The main reason
is that the RPC library we use is very lightweight and is
optimized for batching. For example, with 28 worker threads,
only 7% total CPU time is spent on networked servers. Addi-
tionally, adding a client saves the cost of request generation
on the server (about 2-3% of total CPU time). But note that be-
sides the difference on network stacks, this is still not exactly
an apple-to-apple comparison, because Rolis uses stored pro-
cedures between the client and server while Meerkat uses
interactive transactions.

6.5 Failure recovery

We conduct an experiment on replica failures with 3 replicas
deployed in the same data center. In each run, we use 4, 8, 16
threads respectively to test failure recovery under different
workloads. In the experiment, we kill the leader replica after
the system runs for 10 seconds and observe the system’s
recovery. The recovery time consists of three parts: timeout
through heartbeats, leader election, and replaying transac-
tions in the old epoch. Recovery time is largely determined

o —o— Meerkat - YCSB-T
1M Meerkat - YCSB++
—4— Rolis - YCSB++

3 8M- —«— Networked Rolis - YCSB++

»\é

£ 6M

3

2

=)

2 4M

=

=
" »/./._//‘
oM 4 8 12 16 20 24 28

of threads

Figure 13. Comparisons with Meerkat: throughput on YCSB-
T and YCSB++ benchmark.

by the timeout through heartbeats. We set a relatively high
timeout, 1 second, to avoid false positive detection and the
ensuing expensive recovery process.

After the old leader is killed, a new leader will be elected
among live follower replicas and will continue processing re-
quests. As shown in Figure 14, we track the system’s through-
put in 100 ms intervals and observe a drastic drop at 10
seconds because the leader replica is killed at this moment.
Then, the election Paxos component on the follower replica
loses heartbeats from the leader and, after a timeout, starts
a new round of the election to elect a new leader replica
from the live follower replicas. This blocks the system for
approximately 1.5-2 seconds; the watermark cannot advance
during this downtime.

After a new leader is elected, the throughput of the system
quickly climbs to a peak that is higher than before, as the
system is trying to commit transactions queued up during
the crash. After that, at around 20s, the system returns to
a stable level of throughput, which is still slightly better
than before the crash happens. This is because the system
running on 2 replicas costs less in network communication
than running on 3 replicas.

6.6 Silo vs replay-only

In this experiment, we conduct an evaluation of Silo ver-
sus replay-only, in which we evaluate the throughput of
replaying transactions on follower replicas with watermark
control and Paxos disabled. This helps us understand the
performance of the replay module, and especially whether
it would be a bottleneck with the techniques described in
Section 5. In this experiment, we pre-generate transaction
logs from an independent Silo run, and then load these logs
into the replay threads’ memory.

Figure 15 shows that the throughput of replay-only at 32
cores is 2.25M TPS, which is 51.5% better than the original
Silo’s execution. This improvement is mainly because the
replay only processes the write-set and ignores the read-set,

-+~ TPUT-e- 10th 50th + 95th

Replay-only (Rolis)

g 0.6M 200
z >
5 04M 1502
3 7
g 1003
5 0.2M 3
g 50~
=

=

18 22 2 30 00M55—160 200 400 800 1600 3200°

— 4 threads 8 threads — 16 threads —=— Silo
0.8M
B g 2.0M
Z 0.6M &2
E £ 1sm
I 04m b
2 2. 1.OM
D 0om E]
g € osMm
g g .
0.0M .
0 5 10 15 20 25 30 00M=5—%"15
Time (sec)

Figure 14. Failover test with timeout
set to 1s (TPC-C)

which saves much of the cost in the workload. The through-
put of replay-only scales very well because there is no com-
plicated synchronization and every key-value update can be
performed independently and in parallel. This result indi-
cates that the replay is not the bottleneck in the system.

6.7 Skewed workload

This section evaluates the impact of skewed workloads, or
"hotspots”, on both Silo and Rolis. The skewed workload
setting is adopted from the original Silo paper. We run a
100% new-order workload mix and fix the database size to
4 warehouses in a single partition, with the FastIds opti-
mization disabled. FastIds is an optimization in Silo that
generates the id for NewOrder transactions outside of trans-
actions to reduce conflicts, and was enabled in all other tests.
We then vary the number of available workers, which simu-
lates increasing workload skew (more workers processing
transactions over a fixed size database).

Figure 17 shows that the throughput of Silo stops increas-
ing after 12 workers due to contention on a shared counter
per unique (warehouse-id, district-id) pair, which is
used to generate new-order IDs. Rolis can retain 79—82% of
the throughput of Silo under this skewed workload, as we
expect. The skewed workload is less challenging for Rolis,
because Silo has lower throughput in this setup, and less
log entries are generated to pressure Rolis’s replication and
replay.

6.8 Batch size versus latency

Batching always induces a trade-off between the throughput
and latency of a system: a larger batch size increases the level
of parallelism but introduces longer latency. A transaction’s
latency cannot be lower than the batching duration, which is
a major cause for longer latencies. To understand the impact
of batching and batch size picking strategy, we conduct an
experiment varying the batch size on the TPC-C benchmark
using 16 database worker threads.

Figure 16 shows how changing the batch size would affect
Rolis’s throughput and latency. Compared to a relatively
small batch size (50), a batch size of 1,600 can increase Rolis’s

14

of threads

Figure 15. The cost of replay-only in the
Rolis and Silo (TPC-C)

Batch size

Figure 16. Latency and throughput with
different batch sizes (16 threads, TPC-C)

—e— Silo Rolis

0.5M

0.4M

0.3M

0.2M

Throughput (txns/sec)

0.1M

0.0M

of threads

Figure 17. Performance of Silo and Rolis under a skewed
workload.

throughput by 26.9%. The throughput grows fast as we in-
crease the batch size up to 400, then it keeps increasing at a
slower rate until the batch size is 1600. After that, increasing
the batch size has an opposite impact on the throughput.

We also display the latency at the 10th, 50th, and 95th
percentiles, respectively, as we increase the batch size. The
latency of a transaction in this experiment is defined as the
duration between the time the client issues a transaction and
the time this transaction’s results are returned to the client.
Figure 16 shows that the latency increases as the batch size
grows, as we expect: a higher batch size causes Rolis to take
longer to commit a log entry in a Paxos stream, resulting in a
longer delay before a transaction goes beyond the advanced
watermark to be ready for the replay. Rolis achieves a median
latency of 128.2 ms and a 95th percentile latency of 228.9 ms
with a high batch size of 3200.

Based on these results, we choose a batch size of 1000 for
the TPC-C benchmark and 10,000 for the YCSB++ bench-
mark in other experiments, balancing good throughput per-
formance with relatively low latency.

We measure the median latency of Rolis, Calvin, and 2PL
using 3 replicas within the same data center on the YCSB++
benchmark. Each replica has 16 worker threads. Calvin:
Latency measured in the original Calvin with ZooKeeper

replication support is 83.01 ms, which comes from three
parts: (1) 10-millisecond epoch for batching, (2) sequencers
within a replication group use ZooKeeper to agree on a batch
of transaction requests for each epoch, and (3) transaction
execution. Rolis: Similar to Calvin, Rolis’s latency is 70.06
ms, which is mainly caused by batching, Paxos streams repli-
cation, and asynchronous replay. 2PL: 2PL has lower latency
(21.48 ms) because it does not do batching, resulting in lower
throughput.

6.9 Factor analysis

To better understand the overheads and benefits of the tech-
niques used in Rolis, Figure 18 shows a factor analysis of per-
formance by breaking Rolis down into cumulative changes.
Silo refers to the implementation of the Silo protocol as the
baseline. +Serialization serializes transactions into log entries
using memcpy operations, as described in Figure 6. +Replica-
tion replicates log entries to other follower replicas through
Paxos streams, as described in Section 3.3. +Replay adds re-
play threads to replay transactions on follower replicas, as
described in Section 3.4, and represents Rolis. The workload
here is the standard TPC-C mix running with 16 warehouses
and 16 worker threads.

Throughput. +Serialization results in 9.2% throughput loss,
which is an unavoidable serialization overhead. +Replica-
tion causes another 18.1% loss due to two factors: (1) Paxos
streams copy serialized log entries into their own log lists,
and (2) Paxos streams perform consensus on those logs,
which leaves fewer CPU resources for worker threads. +Re-
play has no impact on the throughput because Rolis replays
transactions on follower replicas asynchronously.

CPU: The leader’s CPU is the bottleneck of the system in
all cases: the CPU consumption on the leader replica in our
tests is always close to 100%. The slight drop in +Replication
is due to the overhead of adding Paxos threads.

Memory: +Serialization claims a fixed large memory space
per worker thread for the serialized log entries, compared
to Silo. For +Replication, the follower replicas need 12.5GB
mainly for the program itself, while the leader replica claims
more memory for serialized log entries inside the Paxos
streams. +Replay does not affect the leader replica but re-
quires another 39.6% CPU for replay and 7.1GB more memory
for queued log entries on each follower.

7 Related work

We review related works in the literature on transactional,
replicated, multi-core systems from the following aspects.

Single-machine multi-core transactional systems. Re-
cent works on optimizing the performance of multi-core
transactional systems primarily focus on multi-core scala-
bility in throughput. A large number of them [20, 24, 29, 31,
38, 39, 44] focus on optimizing concurrency control to build

TPC-C Silo +Serialization = +Replication = +Replay (Rolis)
Throughput 863293 784103 627653 631813
cpu - leader 99.1 % 98.7 % 96.8 % 96.9 %
mem - leader 177G 187G 288G 288G

cpu - follower e e 51% 44.7 %
mem - follower — — 125G 19.6 G

Figure 18. Factor analysis for Rolis by adding cumulative
components: basic Silo, serialization, replication, and replay.

multi-core transactional systems. Zen [25] and FOEDUS [21]
further discuss optimizations targeting non-volatile mem-
ory. All these works are complementary to Rolis as they can
potentially replace the local database of Rolis.

While these systems scale well with multiple cores, they
cannot be easily extended to a replicated environment, be-
cause multi-core execution is inherently non-deterministic,
and keeping replicated systems consistent requires each
replica to reflect the same order of execution, which is a
significant challenge. Rolis uses multiple Paxos streams and
the watermark tracking mechanism to address this challenge.

Traditionally, single-machine databases consider improv-
ing reliability by supporting checkpoints to disks and recov-
ery from them after rebooting from a crash. This provides a
weaker fault-tolerance guarantee than a replication-based
solution like ours, because it does not deal with network
asynchrony and it usually takes a much longer time to re-
cover. For example, a well-optimized checkpoint approach,
SiloR [46], needs several minutes to recover a Silo instance.

Replicating transactional systems. There is a line of trans-
actional systems [7, 12, 26, 27, 30, 37, 45, 48] that are op-
timized to achieve performance and provide availability
through replication [42]. Eris [23] and Harmonia [48] both
exploit programmable switches by moving concurrency con-
trol to switches or detecting read-write conflicts in the net-
work to improve distributed transactions. Some use more
sophisticated replication protocols, such as inconsistent repli-
cation [45] and asymmetric replication [27] protocols to pro-
vide fault tolerance. Deterministic databases [26, 37] are able
to efficiently run transactions across different replicas with-
out coordination overhead. Compared to these systems, Rolis
achieves a much higher throughput. The major reason is that
Rolis is designed to compete against a higher baseline—the
multi-core single-machine database—in a replicated setting,
and it does so by using an execute-replicate-replay model
that masks away the high network latency via intensive
pipelining.

A recent popular approach [5, 10, 18, 36] to improve multi-
core scalability is using a kernel bypass network. Kernel
bypass abstractions (e.g., DPDK, RDMA) are able to provide

both low latency and high throughput. Similar to kernel by-
pass, NetChain [17] can also significantly reduce the latency
of Paxos nodes coordination by caching key-values stores in
switches. DITM+R [5], FaRM [10], and FaSST [18] use kernel
bypass to achieve scalability of distributed transactions with
primary-backup replication [9, 33] by log shipping. How-
ever, they all mix the transaction execution and replication
protocols together to commit transactions, since the primary
has to receive ACKs from all backups before committing a
transaction. Unlike those works, Rolis does not rely on the
low-latency provided by advanced hardware to achieve high-
throughput. Instead, it decouples the transaction execution
and replication protocols carefully to minimize the impact
of replication as much as possible.

Deterministic execution and replay. Previous works [8,
13, 19, 35] have proposed replicating the scheduling infor-
mation on the leader to all replicas to make the parallel
execution (replay) on followers deterministic. Rex [13] is
a multi-core friendly Paxos-based replication system. It al-
lows concurrent execution on the leader replica to proceed
freely, while recording the non-deterministic decisions in
causally ordered traces. Follower replicas follow the agreed-
upon traces by making the same non-deterministic choices
in a concurrent replay to reach the same consistent state as
the leader. However, as the Rex work pointed out, it is very
challenging to replicate a transactional database in this way,
because multi-core transactions require too much locking, in-
curring substantial overhead in tracking the synchronization
orders between threads. Eve [19] lets replicas execute com-
mands in parallel speculatively, then replicas verify whether
they need to rollback and re-execute the commands in the
event of inconsistencies, which incurs high cross-core coordi-
nation overhead. Rolis addresses this challenge by choosing
not to track the orders between locks, but to track the serial-
ization order at the transaction level at the validation phase
of a transaction. This avoids unnecessary coordination over-
head in the transaction execution and in the replay.
Scalable-Replay [35] proposed a primary-backup replay-
based scheme for replicating a multicore database of Er-
mia [20]. After executing a transaction, the primary node
sends transactions to all backup nodes for replay using a
customized multi-version engine on the backups, so that
transactions can read and write different versions of rows
concurrently. This work has comparable throughput to Rolis.
The major advantages of Rolis are two-folded. First, Rolis is
a consensus-based approach that deals with network asyn-
chrony and hence provides a stronger fault-tolerance level
than a traditional primary-backup approach that assumes
synchrony or requires a failure detector. Second, Rolis has
a much shorter failover time: Scalable-Replay needs several
minutes to do a data conversion on the backups before serv-
ing new requests because of different storage structures on

the primary and backups, while Rolis only needs 1.5-2 sec-
onds for failover as we show in Section 6.5.

8 Conclusion

We present Rolis, a new design for building speedy and fault-
tolerant in-memory transactional systems. Rolis adopts an
execute-replicate-replay model, and masks the high cost of
replication via intensive pipelining. The system is carefully
designed so that the execution, replication, and replay are
scalable and have nearly zero coordination overhead across
cores. Our evaluation shows that Rolis can scale well under
different workloads on commodity machines, and achieves
high throughput comparable to state-of-art kernel-bypass
systems, and orders of magnitude higher than conventional
software-only systems.

Acknowledgments

This paper was substantially improved by detailed comments
from our shepherd Martin Maas and the anonymous review-
ers of EuroSys ’22. We thank Mrityunjay Kumar for leading
the development and evaluation of this work in an early
stage. We also thank Meerkat authors for providing the code.
Mu’s group is supported in part by NSF CNS 2130590. Angel’s
group is supported in part by NSF CNS 2107147, 2124184,
2045861 and DARPA HR0011-17-C0047. The evaluation is
supported by Microsoft Azure.

References

[1] B. Arun, S. Peluso, R. Palmieri, G. Losa, and B. Ravindran. Speeding
up consensus by chasing fast decisions. In 2017 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, June 2017.

[2] M. Burke, A. Cheng, and W. Lloyd. Gryff: Unifying consensus and
shared registers. In Proceedings of USENIX Conference on Networked
Systems Design and Implementation (NSDI), Feb. 2020.

[3] M. Burrows. The chubby lock service for loosely-coupled distributed
systems. In Proceedings of ACM Symposium on Operating Systems
Principles (SOSP), Nov. 2006.

[4] T.D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: an
engineering perspective. In Proceedings of ACM Symposium on
Principles of Distributed Computing (PODC), Aug. 2007.

[5] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen. Fast and general
distributed transactions using RDMA and HTM. In Proceedings of the
Eleventh European Conference on Computer Systems, Apr. 2016.

[6] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In Proceedings of
ACM Symposium on Cloud Computing (SoCC), June 2010.

[7] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,

S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, et al. Spanner:
Google’s globally distributed database. ACM Transactions on
Computer Systems (TOCS), Aug. 2013.

[8] H. Cui, R. Gu, C. Liu, T. Chen, and J. Yang. Paxos made transparent.
In Proceedings of ACM Symposium on Operating Systems Principles
(SOSP), 2015.

[9] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield. Remus: High availability via asynchronous virtual
machine replication. In Proceedings of USENIX Conference on
Networked Systems Design and Implementation (NSDI), Apr. 2008.

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

A. Dragojevi¢, D. Narayanan, E. B. Nightingale, M. Renzelmann,

A. Shamis, A. Badam, and M. Castro. No compromises: Distributed
transactions with consistency, availability, and performance. In
Proceedings of ACM Symposium on Operating Systems Principles
(SOSP), Oct. 2015.

V. Enes, C. Baquero, T. F. Rezende, A. Gotsman, M. Perrin, and P. Sutra.
State-machine replication for planet-scale systems. In Proceedings of
ACM European Conference on Computer Systems (EuroSys), Apr. 2020.
H. Fan and W. Golab. Gossip-based visibility control for
high-performance geo-distributed transactions. Proceedings of
International Conference on Very Large Data Bases (VLDB), 2021.

Z. Guo, C. Hong, M. Yang, D. Zhou, L. Zhou, and L. Zhuang. Rex:
replication at the speed of multi-core. In Proceedings of ACM
European Conference on Computer Systems (EuroSys), Apr. 2014.

M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Transactions on Programming Languages
and Systems (TOPLAS), July 1990.

C. Hong, D. Zhou, M. Yang, C. Kuo, L. Zhang, and L. Zhou. Kuafu:
Closing the parallelism gap in database replication. In 2013 IEEE 29th
International Conference on Data Engineering (ICDE). IEEE, 2013.
TPC-C is an On-Line Transaction Processing Benchmark.
http://www.tpc.org/tpcc/.

X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and L. Stoica.
Netchain: Scale-free sub-rtt coordination. In Proceedings of USENIX
Conference on Networked Systems Design and Implementation (NSDI),
2018.

A. Kalia, M. Kaminsky, and D. G. Andersen. FaSST: Fast, Scalable and
Simple Distributed Transactions with Two-Sided (RDMA) Datagram
RPCs. In Proceedings of USENLX Symposium on Operating Systems
Design and Implementation (OSDI), Nov. 2016.

M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and

M. Dahlin. All about eve: Execute-verify replication for multi-core
servers. In Proceedings of USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2012.

K. Kim, T. Wang, R. Johnson, and I. Pandis. Ermia: Fast
memory-optimized database system for heterogeneous workloads. In
Proceedings of ACM International Conference on Management of Data
(SIGMOD), June 2016.

H. Kimura. Foedus: Oltp engine for a thousand cores and nvram. In
Proceedings of ACM International Conference on Management of Data
(SIGMOD), May 2015.

L. Lamport et al. Paxos made simple. ACM Sigact News, Nov. 2001.

J. Li, E. Michael, and D. R. Ports. Eris: Coordination-free consistent
transactions using in-network concurrency control. In Proceedings of
ACM Symposium on Operating Systems Principles (SOSP), Oct. 2017.
H. Lim, M. Kaminsky, and D. G. Andersen. Cicada: Dependably fast
multi-core in-memory transactions. In Proceedings of ACM
International Conference on Management of Data (SIGMOD), May 2017.
G. Liu, L. Chen, and S. Chen. Zen: a high-throughput log-free OLTP
engine for non-volatile main memory. Proceedings of International
Conference on Very Large Data Bases (VLDB), Jan. 2021.

Y. Lu, X. Yu, L. Cao, and S. Madden. Aria: a fast and practical
deterministic oltp database. The Proceedings of the VLDB Endowment
(PVLDB), Aug. 2020.

Y. Lu, X. Yu, and S. Madden. Star: Scaling transactions through
asymmetric replication. In The Proceedings of the VLDB Endowment
(PVLDB), July 2019.

Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast multicore
key-value storage. In Proceedings of ACM European Conference on
Computer Systems (EuroSys), Apr. 2012.

S. Mu, S. Angel, and D. Shasha. Deferred runtime pipelining for
contentious multicore software transactions. In Proceedings of ACM
European Conference on Computer Systems (EuroSys), Mar. 2019.

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

S. Mu, L. Nelson, W. Lloyd, and J. Li. Consolidating concurrency
control and consensus for commits under conflicts. In Proceedings of
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Nov. 2016.

N. Narula, C. Cutler, E. Kohler, and R. Morris. Phase reconciliation for
contended in-memory transactions. In Proceedings of USENLX
Symposium on Operating Systems Design and Implementation (OSDI),
2014.

D. Ongaro and J. Ousterhout. In search of an understandable
consensus algorithm. In Proceedings of USENIX Conference on Annual
Technical Conference (ATC), June 2014.

D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and

M. Rosenblum. Fast crash recovery in RAMCloud. In Proceedings of
ACM Symposium on Operating Systems Principles (SOSP), Nov. 2011.
C. H. Papadimitriou. The serializability of concurrent database
updates. Journal of the ACM (JACM), Oct. 1979.

D. Qin, A. D. Brown, and A. Goel. Scalable replay-based replication
for fast databases. Proceedings of the VLDB Endowment, Sept. 2017.
A. Szekeres, M. Whittaker, J. Li, N. K. Sharma, A. Krishnamurthy, D. R.
Ports, and I. Zhang. Meerkat: multicore-scalable replicated
transactions following the zero-coordination principle. In Proceedings
of ACM European Conference on Computer Systems (EuroSys), Apr.
2020.

A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi.
Calvin: fast distributed transactions for partitioned database systems.
In Proceedings of ACM International Conference on Management of
Data (SIGMOD), May 2012.

S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy
transactions in multicore in-memory databases. In Proceedings of
ACM Symposium on Operating Systems Principles (SOSP), Nov. 2013.
Z. Wang, S. Mu, Y. Cui, H. Yi, H. Chen, and J. Li. Scaling multicore
databases via constrained parallel execution. In Proceedings of ACM
International Conference on Management of Data (SIGMOD), June 2016.
Z. Wang, H. Qian, J. Li, and H. Chen. Using restricted transactional
memory to build a scalable in-memory database. In Proceedings of
ACM European Conference on Computer Systems (EuroSys), Apr. 2014.
X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-memory
transaction processing using rdma and htm. In Proceedings of the 25th
Symposium on Operating Systems Principles, Oct. 2015.

M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso.
Understanding replication in databases and distributed systems. In
Proceedings 20th IEEE International Conference on Distributed
Computing Systems. IEEE, 2000.

YCSB open-source implementation.
https://github.com/brianfrankcooper/YCSB.

X. Yu, A. Pavlo, D. Sanchez, and S. Devadas. Tictoc: Time traveling
optimistic concurrency control. In Proceedings of ACM International
Conference on Management of Data (SIGMOD), June 2016.

I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R.
Ports. Building consistent transactions with inconsistent replication.
ACM Transactions on Computer Systems (TOCS), Dec. 2018.

W. Zheng, S. Tu, E. Kohler, and B. Liskov. Fast databases with fast
durability and recovery through multicore parallelism. In Proceedings
of USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Oct. 2014.

S. Zhou and S. Mu. Fault-tolerant replication with pull-based
consensus in MongoDB. In Proceedings of USENIX Conference on
Networked Systems Design and Implementation (NSDI), Apr. 2021.

H. Zhu, Z. Bai, J. Li, E. Michael, D. Ports, L. Stoica, and X. Jin.
Harmonia: Near-linear scalability for replicated storage with
in-network conflict detection. Proceedings of International Conference
on Very Large Data Bases (VLDB), Nov. 2019.

http://www.tpc.org/tpcc/
https://github.com/brianfrankcooper/YCSB

A Artifact appendix
A.1 Abstract

A Docker image is provided which contains required dependencies
and source code to run the system. In addition, instructions are pro-
vided in the README . md for 1) running minimal working examples;
2) reproducing the major results.

A.2 Description & Requirements

A.2.1 How to access. The source code is publicly available at
https://github.com/stonysystems/rolis. You can either run the bi-
nary Docker distribution for validating Rolis’s functionalities, or
build the system yourself in the real distributed environment.

A.2.2 DOL. https://doi.org/10.5281/zenodo.6335844.

A.2.3 Hardware dependencies. Rolis is able to run on any x64
server with Docker support. In case you want to reproduce the
major results reported in the paper, 3 servers with 32 CPU cores in
a single socket are required.

A.2.4 Software dependencies. We run all our code on ubuntu
18.04, which mainly depends on common Linux libraries (i.e., boost,
gcc and libyaml-cpp-dev). You can install all dependencies by bash
./install.sh.

A.2.5 Benchmarks. Performance experiments use the TPC-C
and YCSB++ benchmark, which are generated by dedicated threads
and implemented in tpcc.cc and micro_bench.cc within the
source code, respectively.

A.3 Set-up

Please follow instructions in the . /README.md in the source code
to set up the system.

A.3.1 Major Claims. Rolis can achieve 1.03M TPS on the TPC-C
workload, which is comparable to state-of-the-art kernel bypass
systems. This is proven by the experiment described in §6.2 whose
results are illustrated/reported in Figure 10a.

A.3.2 Experiments. You can get all experiment results by run-
ning bash ./one-click.sh.

https://github.com/stonysystems/rolis

	Abstract
	1 Introduction
	2 Overview
	2.1 Background
	2.2 Problem statement and strawman
	2.3 Challenges and high-level idea

	3 Main System Design
	3.1 Architecture
	3.2 Executing transactions on the leader
	3.3 Replicating with multiple Paxos streams
	3.4 Replaying transactions on followers
	3.5 A review of stages in Rolis

	4 Availability
	4.1 Replay under failures
	4.2 Correctness
	4.3 Adding a new follower replica

	5 Implementation
	6 Evaluation
	6.1 Experimental setup
	6.2 Performance and scalability
	6.3 Comparison with software implementations
	6.4 Comparison with kernel-bypass systems
	6.5 Failure recovery
	6.6 Silo vs replay-only
	6.7 Skewed workload
	6.8 Batch size versus latency
	6.9 Factor analysis

	7 Related work
	8 Conclusion
	References
	A Artifact appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up

