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Abstract
Realistic experimentation is a key component of systems

research and industry prototyping, but experimental clusters
are often too small to replay the high traffic rates found in pro-
duction traces. Thus, it is often necessary to downscale traces
to lower their arrival rate, and researchers/practitioners gener-
ally do this in an ad-hoc manner. For example, one practice is
to multiply all arrival timestamps in a trace by a scaling factor
to spread the load across a longer timespan. However, tempo-
ral patterns are skewed by this approach, which may lead to
inappropriate conclusions about some system properties (e.g.,
the agility of auto-scaling). Another popular approach is to
count the number of arrivals in fixed-sized time intervals and
scale it according to some modeling assumptions. However,
such approaches can eliminate or exaggerate the fine-grained
burstiness in the trace depending on the time interval length.

The goal of this paper is to demonstrate the drawbacks of
common downscaling techniques and propose new methods
for realistically downscaling traces. We introduce a new para-
digm for scaling traces that splits an original trace into multi-
ple downscaled traces to accurately capture the characteristics
of the original trace. Our key insight is that production traces
are often generated by a cluster of service instances sitting
behind a load balancer; by mimicking the load balancing used
to split load across these instances, we can similarly split the
production trace in a manner that captures the workload ex-
perienced by each service instance. Using production traces,
synthetic traces, and a case study of an auto-scaling system,
we identify and evaluate a variety of scenarios that show how
our approach is superior to current approaches.
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1 Introduction
To realistically evaluate the performance of systems, both

researchers and practitioners heavily rely upon production
traces, which capture the incoming traffic patterns in real-
world systems. A number of these traces are publicly avail-
able, such as the recently updated Google trace [25, 40, 49,
53], Microsoft Azure trace [13], Alibaba trace [27], Wikipedia
trace [51], and SNIA IOTTA traces [3]. Additionally, re-
searchers in companies have access to private traces. However,
because these traces are captured on large production clus-
ters, they often have too high of a traffic intensity for smaller
experimental clusters. As a result, replaying such a trace on a
smaller experimental cluster requires a pre-processing step to
downscale the trace.

The ability to downscale traces is important for both academia
and industry. Researchers often use downscaled traces on a
smaller experimental cluster and claim their results realis-
tically compare the benefits and drawbacks between state-
of-the-art approaches [6, 7, 23]. Developers often use down-
scaled traces to test and debug new features in a smaller test
cluster to detect and fix as many bugs as possible before de-
ploying the code in a production environment. In both cases,
it is important for the downscaling process to preserve char-
acteristics of the original trace as much as possible.

The purpose of this work is to study the effects of down-
scaling traces. We demonstrate how common downscaling
techniques fail to capture key characteristics of the original
trace. For example, the burstiness of the original trace may be
exaggerated or diminished depending on how a trace is scaled.
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Figure 1. Overview of TraceSplitter.

Failing to capture these characteristics could lead to design-
ing new systems to deal with phenomena that do not occur in
practice, or worse, it could present an overly optimistic view
of a prototype’s ability to handle real-world phenomena. To
alleviate this, we introduce a new paradigm for trace down-
scaling that more realistically preserves these characteristics.
Our technique helps both academics and developers in down-
scaling traces realistically, thereby improving the fidelity of
results on smaller experimental clusters.

Fig. 1 provides an overview of our research. The original
trace contains information such as the request arrival time and
request size collected from a production cluster. To enable re-
playing the trace on a smaller target experimental cluster, the
downscaling process will generate scaled down versions of
the trace that have a lower request arrival rate than the original
trace according to a user-specified scaling factor. Users of our
TraceSplitter tool will use one or more of these downscaled
traces to evaluate their work on their target cluster. Using all
of the downscaled traces will ensure that all the requests in
the original trace are replayed. However, we find that in many
cases, the downscaled traces are similar; so using a random
subset of them would accelerate experimentation. To evaluate
the quality of the downscaling process, we compare perfor-
mance metrics of running the original trace on the original
system with running the downscaled traces on the smaller
target system. In practice we do not assume/require users to
have access to the original system; we only use this access in
our study to develop and evaluate TraceSplitter. The focus of
our work is on latency-sensitive applications so our primary
metrics of interest are the average and tail latency (i.e., time
to complete the slowest requests).

Downscaling is fundamentally a lossy process, and thus
there is no perfect method for downscaling since there are
many sources of randomness, including the system, the orig-
inal trace, and the downscaling process. At the same time,
downscaling is also a somewhat subjective matter, in that

the expected outcome from the downscaling process can be
different depending on the use case. For example, whereas
our interest in this work is in preserving latency properties
when downscaling, others may wish to preserve a different
set of characteristics such as resource utilization, throughput,
cache hit/miss rate, or distribution of user types, to name a
few.

Thus, rather than trying to create an “optimal” downscaler,
the goal of this paper is to raise awareness of the potential
pitfalls of common techniques employed today and introduce
a new approach that avoids these pitfalls in a wide range of
use cases. Our approach focuses on preserving latency, which
is a popular characteristic of interest in experiments. While
downscaling can never entirely replace the need to experiment
with systems at larger scales, we believe experiments with
traces downscaled using TraceSplitter still provide useful
insights that can help in developing new system ideas and
designs.

From reading through a number of papers, we have identi-
fied some of the most popular downscaling approaches used
today. Unfortunately, most papers only describe their ap-
proach in passing to the effect: “We scale the trace to an
appropriate load for our cluster.” Of the papers that do de-
scribe their scaling methodology in more detail, one com-
mon approach is to measure the arrival rate in time intervals
(i.e., count the number of arrivals within time windows) and
scale the rate as needed [4, 21, 23, 52, 55]. However, this
approach is highly sensitive to the length of the time inter-
val. Choosing too large of an interval would eliminate any
fine-grained burstiness found in the original trace. Choos-
ing too small of an interval would result in rounding issues
that may exaggerate the burstiness and potential introduc-
tion of artificial burstiness that is not present in the original
trace. Another popular approach is to scale the arrival times-
tamps in the original trace to spread the load across a longer
timespan [6, 20, 34, 52]. However, this approach distorts the
temporal patterns found in the original trace. For example,
diurnal load patterns may be stretched over multiple days, and
this may affect the amount of time available for auto-scaling
systems to react. Lastly, another common approach for down-
scaling is to randomly sample requests from the original trace.
While this avoids some of the problems from the previous
approaches, sampling-based approaches omit some requests
in the original trace, which may not be ideal for traces with a
small number of rare requests that disproportionately impact
performance.
Key Insight: To address these shortcomings, we introduce
a new downscaling approach based on the idea of splitting
traces similar to how a load balancer splits traffic. Our idea
is motivated by the insight that many systems today have
a front-end load balancer that distributes work across the
servers within the original system. Since production systems
often employ a well-designed load balancer, we may reason-
ably assume that any two servers (or equal-sized subsets of
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servers) experience statistically similar traffic in terms of the
workload features that affect latency. This in turn suggests
a very natural way of constructing a downscaled trace: pick
the traffic serviced by a subset of the servers that matches the
workload intensity desired by the experimenter on the target
system. What is particularly worth highlighting is that this
subset of servers may be an entirely hypothetical construct
that may be determined by simulating an imagined load bal-
ancer. In this manner, multiple downscaled traces, one for
each distinct subset of the appropriate size, may be derived.
A key benefit of this approach is that since the original trace
is split into multiple downscaled traces, we do not lose any
information in the sense that any rare requests would show
up in at least one of the downscaled traces.

Our new paradigm of framing trace downscaling in terms
of load balancing opens up many possibilities based on the
selected load balancing policy. For example, a random load
balancing policy reduces to the prior approach of random sam-
pling, except that we retain each request in at least one of the
scaled traces. The round robin load balancing policy would
result in a deterministic sampling approach to downscaling.
Deterministic sampling could result in skewed behaviors in
traces with deterministic patterns, so a randomized round
robin approach may yield a good balance between the round
robin and random sampling approaches. However, we find
that, in the presence of request size variability, the least work
policy tends to achieve some of the best scaling results. When
splitting a trace into multiple downscaled traces, this policy
assigns requests to the downscaled trace with the least work
so far in the trace. Since many systems use a dynamic load
balancing policy such as least work (left), we find that split-
ting using this load balancing policy most closely matches
the original trace behavior for a wide range of scenarios. Our
experimental results with a mixture of real-world production
traces and synthetic traces show that this approach works
better than the common approaches used today.
Contributions: Our contributions are three-fold:

• We demonstrate how the most popular scaling tech-
niques used in research have the potential to lead to
skewed latency results depending on the original work-
load and how it was downscaled (Sec. 4). We conduct a
case study to show how downscaling can lead to picking
incorrect parameters in an autoscaling system (Sec. 5).

• We introduce a new paradigm for thinking about down-
scaling as a load balancing problem (Sec. 3). This idea
leads to multiple downscaling approaches that are su-
perior to current approaches used in practice today.

• TraceSplitter is available as an open-source tool at
https://github.com/smsajal/TraceSplitter.

2 Related Work
In our review of the literature, we find that very often the

downscaling methodology is not described in enough detail
to be reproduced [15, 48, 54, 58]. A small number of papers

do describe their downscaling methodology, and these tend
to fall into one of the following three broad categories: (i)
sampling, (ii) model-based scaling, and (iii) timespan scaling.
Sampling: One popular approach for downscaling is based
on sampling from the original trace [7, 12, 30, 31, 35, 37, 47].
The key drawback of sampling is that it may fail to include
important requests. Furthermore, in the case of random sam-
pling, the probability of failing to include an important request
is higher for rarer request types. As a result, sampling-based
approaches may yield downscaled traces that are not represen-
tative of the original trace. On the other hand, random sam-
pling can also cause rare events to be over-represented. With
workloads where rare events also happen to have very differ-
ent performance characteristics from the remaining events,
such under/over-representation can lead to misleading results
in experiments using the downscaled trace.
Model-Based Scaling: These approaches are based on de-
vising parameterized analytical/computational models from
the original trace and then using these models with suitable
parameter settings for the target system. Perhaps the most
popular example of such an approach is based on measur-
ing the average request arrival rate within time intervals of
a fixed length, multiplying the arrival rates by the scaling
factor, and generating scaled traces via an arrival process
(e.g., Poisson process) [4, 21, 23, 52, 55]. Our evaluation
compares against this approach, which we label as AvgRate.
The efficacy of such an approach tends to be very sensitive
to the choice of this fixed interval—choosing too small an
interval may result in exaggerating the burstiness in the ar-
rival process relative to the original trace, while choosing
too large an interval may suppress it. Fig. 15 in Sec. 4 offers
concrete examples of this sensitivity to the choice of the in-
terval. Similar models are also developed for other features
besides the arrival rate. We find such approaches used with
the Google trace [9–11, 28, 33, 38, 43–46, 56, 57], ClarkNet
trace [8], Wikipedia trace [8], Microsoft Azure trace [16, 19],
Alibaba trace [36], and others [22, 26, 42]. The key shortcom-
ing of these modeling-based approaches is that their efficacy
crucially depends on the quality of the model. Generally
speaking, the number of workload properties relevant to an
experimenter’s interest may be large, making it next to im-
possible to devise effective models for each property. This
means the onus of choosing the right set of properties is on
the experimenter. This is fraught with the risks of missing out
key properties, choosing irrelevant ones, etc., because more
often than not, (a) the experimenter is not an expert in devis-
ing such models, and (b) their core interests are orthogonal to
such modeling. Finally, relevant properties worth modeling
can vary from one research problem to another, implying that
the modeling insights from one work may not readily transfer
to another.
Timespan Scaling: Another trace scaling approach, which
we call timespan scaling, multiplies the arrival times in the
original trace by (1/scaling factor) to spread the load over
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a longer period of time [6, 20, 34, 52]. There are obvious
downsides to this approach. Most prominently, downscal-
ing by stretching arrival times results in distorting temporal
patterns. For example, time of day effects may be stretched
over multiple days. This can be problematic in some systems
such as autoscaling systems, which would have more time
to react to load increases than the original workload would
have allowed. This can lead to an improper assessment of
the agility and overall efficacy of the autoscaling system. A
more subtle (and perhaps counter-intuitive) downside to this
approach is that, since it downscales by “stretching” arrival
times, it may create longer-lasting bursts than in the original
workload. This may translate into a deceptive overload with
correspondingly degraded performance. We demonstrate this
concretely in Fig. 9a vs. Fig. 9c.

The effects of potentially unrealistic downscaling on an
experiment depends on the context in which the traces are
used, the particular property being evaluated, the trace char-
acteristics, the care the authors have taken in their evaluation
process, etc. Due to these factors, the discussed works may
not have suffered significantly from unrealistic downscaling
depending on the context of their evaluation. Nevertheless,
it is important to understand the potential pitfalls and weak-
nesses of current downscaling approaches. As an example,
our autoscaler case study in Sec. 5 shows how downscaling
techniques can lead to erroneous conclusions in real world
scenarios.

3 TraceSplitter Design and Implementation
We first describe the goal and scope of TraceSplitter. Next,

we present the key insights underlying its design. Finally, we
discuss some practical considerations that arise when using
TraceSplitter.
3.1 Goals and Scope

Given a trace collected from an original system, the goal
of TraceSplitter is to produce downscaled traces that—when
used on a smaller target system—faithfully preserve charac-
teristics of the original trace such as average and tail latency.
Downscaling traces enables users to (a) use experimental
systems of different sizes, and (b) conduct experiments on a
particular setup with traces of different arrival rates to study
the effect of different loads. TraceSplitter takes as input an
original trace and a user-specified scaling factor (0 < 5  1),
which specifies the ratio of the desired average arrival rate in
the target system and the average arrival rate in the original
system. Most of our discussion is in terms of arrival rate for
the sake of clarity, but one can also scale on the basis of the
rate of work arriving to the system, which is dependent on
both the arrival rate and request sizes of those arrivals. Un-
der the assumption that the throughput of the system scales
linearly with the system size (i.e., a system with 4 servers
would have double the throughput of a system with 2 servers),

one should select the scaling factor based on the ratio of sys-
tem sizes (e.g., scaling from 4 servers to 2 would result in
5 = 0.5).

The scope of our work is in latency-sensitive systems,
which encompass a broad range of cloud-based systems.
Users interact with these systems by sending requests, which
trigger work at one or more machines/nodes in the system.
For example, a social network web application uses a set of
web servers, caching servers, and database servers to pro-
cess user requests such as posting a message or browsing the
posts. As users expect timely responses, we focus on aver-
age and several latency percentiles to capture the tail effects,
which are often of primary interest when using traces. It is
certainly possible to imagine scenarios wherein a user would
like the downscaling process to preserve other types of prop-
erties besides (or in addition to) latency-related traits. For
instance, in some settings, it may be important to retain the
distributions of request types or users. In general, it may not
be possible to jointly preserve all specified properties since
preserving some may be inherently at odds with preserving
others. TraceSplitter assumes that the downscaling process is
primarily affecting stateless (or mostly stateless) components
of the system. For example, in a multi-tier web system, the
intent of our downscaling is primarily to adjust the load on
the stateless web tier. While the design of TraceSplitter may
provide reasonable results with stateful systems, we have not
explicitly accounted for complexities such as caching effects,
dependencies between requests, data affinity, flow affinity,
etc., which are beyond the scope of the current work.
Trace Format and Content: Let " denote the number of
entries in the trace. Each such entry corresponds to a request
serviced by the original system, with the 8C⌘ entry of the form
(08 , A8 ,>8 ). Requests are sorted by the arrival time 08 . The
request size of request 8 is denoted as A8 , and it will be inter-
preted along with any opaque data >8 (e.g., request parameters
for trace replay) by a user-provided service time estimation
function B4AE824)8<4⇢BC8<0C>A (A8 ,>8 ). The service time es-
timator translates the request size into the amount of time
or work required to perform the operation, which is used by
TraceSplitter to perform a more realistic downscaling. The
estimator does not need to be very accurate and is mainly used
to gauge the relative differences between request sizes. If an
estimator is not available, the default behavior is to treat each
request as having the same service time, which works reason-
ably well in scenarios where service times are not drastically
different. Lastly, we use >8 to denote any other relevant infor-
mation in the trace, which we treat as an opaque data type.
TraceSplitter only focuses on the arrival time and request
size information, and any other information will be copied
through to the downscaled traces. Our trace format is general
enough to accommodate most traces we have encountered in
our literature review.
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Figure 2. Illustration of the key insight underlying TraceSplitter.

3.2 Definitions
We begin by defining a few phrases that are necessary for

explaining the key TraceSplitter ideas.
Request Type: A request type represents a category of re-
quests that an experimental setup would serve. For example,
the request types serviced by a social media application might
include Log In, Send Message, Send Friend Request, etc.
Request Size: The request size is any metric (e.g., payload
size, packet size, CPU cycles, etc.) that has a strong correla-
tion with processing time or resource consumption.
Service Time: The service time refers to the amount of time
taken to serve the request by the server and is typically based
on the request size. It excludes any other delays experienced
by the request such as queueing delay. In estimating service
time, we are primarily interested in relative differences due
to request sizes. For example, assume that a social media
application takes C time to perform Send Message with 100
bytes and 2C time to perform Send Message with 1000 bytes. If
the service time of Send Message with 100 bytes is estimated
as 1, then the service time of Send Message with 1000 bytes
should be estimated as 2.
3.3 Key TraceSplitter Ideas

The core idea behind TraceSplitter is to frame the trace
downscaling problem in terms of how a load balancer splits
traffic. That is, we split the requests in the original trace into
multiple downscaled traces in a way similar to how a load
balancer splits requests across multiple servers. One benefit
of this approach is that we retain each request in the original
trace in at least one of the downscaled traces; thus, we do not
miss any potentially unusual requests that may expose some
performance or correctness issues. This approach also does
not over or under represent any of the requests. The rest of
this paper aims to justify how TraceSplitter’s approach is re-
alistic for downscaling traces while maintaining performance
characteristics of the original trace. Here, we present the in-
tuition behind TraceSplitter, and extensive experimentation
results are presented in Sec. 4 and Sec. 5.

The intuition behind TraceSplitter stems from the insight
that many large scale systems employ load balancers to bal-
ance traffic across a cluster of servers. Fig. 2a illustrates a
typical web server system with a front-end load balancer. The
performance of this original system is predominantly deter-
mined by the servers behind the load balancer. For example,
the average latency is roughly approximated by the average
latency seen by each web server. Thus, the traffic received by
the web servers is a reasonable proxy for the overall system
behavior. In this sense, capturing the incoming traffic in one
web server can be seen as a representative version of the down-
scaled traffic. Thus, the novelty of our approach is in making
the connection to load-balancing techniques and using this
as a framework for realistic trace downscaling. TraceSplitter
works by playing the role of a hypothetical load balancer
as shown in Fig. 2b. In this example, we scale an original
trace by 5 = 1 / 2, which generates 1

5 = 2 downscaled traces.
For clarity of exposition, we explain our ideas assuming 1

5 is
an integer; Sec. 3.4 discusses how we address non-integral
scaling.

Under our load balancing framework, there are a number
of load balancing policies that would translate into different
trace downscaling approaches.
Random: One of the most basic load balancers is the random
load balancer, which would translate to the random sampling
trace scaling approach. If one were to apply this policy to the
TraceSplitter framework, the main difference with traditional
random sampling is that each of the requests would end up
in one of the downsampled traces, whereas traditional sam-
pling approaches would ignore/discard requests that weren’t
sampled.
Round Robin (RR): Round robin is another basic load bal-
ancing policy that alternates requests across the servers in a
deterministic fashion. When applied to trace downscaling, RR
translates to a deterministic sampling approach where every
8C⌘ request belongs in the

⇣
8 mod 1

5

⌘
-th downscaled trace.

Randomized Round Robin (RRR): Randomized round robin
is an enhancement to the round robin policy where every
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Figure 3. An example of our service time estimation tech-
nique.

“round” of requests is randomly distributed across the servers.
In TraceSplitter, this policy (TS-RRR) corresponds to taking
consecutive groups of 1

5 requests (i.e., one round of requests)
and randomly assigning them among the downscaled traces.
RRR is a natural extension from the perspective of load bal-
ancing, but we are unaware of any work that applies RRR to
trace downscaling. In our experiments, we find that TS-RRR
is one of the best downscaling approaches.
Least Work Left (LWL): Least Work Left is a more so-
phisticated load balancing policy that uses request sizes to
determine request assignment to servers. The approach works
by estimating the amount of work left in each server and
sending requests to the server with the least amount of work
left. In TraceSplitter, this policy (TS-LWL) corresponds to
assigning requests in the original trace to the downscaled
trace with the least amount of work. That is, rather than bal-
ancing the number of requests in downscaled traces, TS-LWL
balances the amount of work in each downscaled trace, which
ideally would mimic the performance characteristics of a well-
balanced original system. Sec. 3.4 describes how we estimate
the work (i.e., service time) of requests, which only needs
to be a rough approximation. Our experiments show that TS-
LWL is the most realistic downscaling approach across a
range of real-world and synthetic traces.
3.4 Practical Considerations
Non-Integral Scaling: When the scaling is non-integral (i.e.,
1
5 is not an integer), our load balancing idea does not directly
apply. We adapt the load balancing idea to partition the origi-
nal trace into multiple downscaled traces as follows. We take
the ceiling of 1

5 as the number of partitions (i.e., = = d 15 e).
Among these partitions, (= � 1) of them will each get 5 frac-
tion of the original trace’s requests, distributed according to
the load balancing policy. The =C⌘ partition gets the remaining
requests, which is less than the desired fraction 5 . To compen-
sate, we oversample requests from the other partitions. That is,
we precompute a probability for when a request being added
to one of the (=�1) downscaled traces would be duplicated in
the =C⌘ trace. Sec. 4.4 demonstrates that this approach yields
reasonable results.
Service Time Estimation: Ideally, the trace would contain
service times measured on the original system. In practice,

it may not be possible for trace providers to reveal such in-
formation for fear of disclosing proprietary design choices or
violating customer privacy. Therefore, we assume a service
time estimator will fill this gap. Specifically, the user-provided
function B4AE824)8<4⇢BC8<0C>A (A8 ,>8 ) estimates the time it
takes to execute a request of size A8 . The estimation is only
used to gauge the relative difference between request sizes.
Thus, if performance scales linearly with A8 , then one could
simply return A8 . However, in many systems, there are non-
linearities in handling requests of various sizes. Fig. 3 shows
an example of how the throughput in our system varies with
the request size. We collect this data via a simple offline pro-
filing wherein we measure the highest sustainable throughput
for different request sizes. One can use such a process to
collect a table of throughput values for various request sizes
and then estimate service time as 1 / throughput(A8). Since
the estimator is used to quantify the relative differences be-
tween request sizes, we find a simple approach like this is
sufficient. The user can also use latency in the original sys-
tem (if available) or request size as a proxy for service time
estimation, although that would be less reliable than profil-
ing. In the absence of reasonable service time estimation, the
B4AE824)8<4⇢BC8<0C>A (A8 ,>8 ) function can return a constant
value, in which case TS-LWL would reduce to TS-RR or
TS-RRR depending on the tie-breaking decision in TS-LWL.

4 Experimental Evaluation
4.1 Methodology
Server Application and Experimental Setup: We evalu-
ate the efficacy of TraceSplitter in the specific context of
a 3-tiered social networking application. The first tier is a
replicated web server with a front-end load balancer based
on Nginx [39] configured to use the Least Connected load
balancing policy. We use Elgg [14], an open source social
networking application written in PHP, for this web tier. The
second tier is an in-memory Memcached [18] caching tier.
The third tier is a MySQL [17] database containing the appli-
cation state. Our client application for generating workloads
for the server by replaying supplied traces is written in Java
using the Faban [1] library. This client application employs a
multi-threaded architecture wherein each thread performs the
functionality of an individual user.

We deploy our entire setup in Amazon EC2 instances. Each
component described above is placed in an Ubuntu-based
Docker [32] container. We choose our experimental setup
to ensure that no component, with the exception of the web
tier, is a bottleneck. To this end, we generally use m5.xlarge
instances (4 vCPUs, 16 GiB Memory) and ensure that the
containers in an experiment are hosted in separate instances
to avoid cross-component interference. We use m5.8xlarge
instance (32 vCPUs, 64 GiB Memory) for the load balancer
to ensure we are able to handle a large number of concurrent
requests. In cases where our caching and database tiers need
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Trace Real World Trace Synthetic Trace
Microsoft

Trace
Storage
Trace Bursty Temporal

Pattern
Different

Request Sizes
Arrival
Pattern Rare Event

Existing
Approaches

Rand 7 3 3 3 7 3 7
AvgRate 7 7 7 7 7 3 7
T-span 7 7 7 7 7 7 3

RR 7 3 3 3 7 7 3
Our

Approaches
TS-RRR 7 3 3 3 7 3 3
TS-LWL 3 3 3 3 3 3 3

Table 1. Summary of our experimental evaluation. 3 indicates that the downscaling method closely matched the performance of
the original trace while 7 indicates that it did not.
even more resources, we use the larger m5.24xlarge instances
(96 vCPUs, 384 GiB Memory) instances [2].
Metrics: We focus on latency-based performance metrics
(mean and several percentiles). We also consider the energy
distance statistics metric to compare the entire latency distri-
butions (Sec. 4.7). Unless otherwise specified, all the metrics
reported are averaged over five runs and error bars show stan-
dard error. The standard errors in our graphs give an estimate
of how far the sample mean is likely to be from the population
mean. Simply put, large error bars indicate high variability in
the results while small error bars indicate more confidence
in our results. Metrics reported for partitioning-based scaling
methods (TS-LWL, TS-RRR and RR) are based on results for
all partitions.
Baselines: We choose four baselines to represent existing
approaches. (i) For Random (Rand), we randomly sample
requests based on the scaling factor. (ii) For Average Rate
Scaling (AvgRate), we calculate the average arrival rate of re-
quests within pre-determined time intervals (e.g., 10 sec) and
multiply it by the scaling factor. New requests are generated
by randomly picking requests within the interval until the
scaled-down arrival rate is matched (i.e., equivalent to a Pois-
son process within an interval). The choice of time interval
plays a crucial role in AvgRate, which we explore in Sec. 4.5.
We acknowledge that a well-crafted workload performance
model might perform well, but determining a good model
for each type of workload is difficult for users, which is why
we adopt a model-free approach. (iii) For timespan scaling
(T-span), we scale the arrival time of the requests by multi-
plying by the scaling factor. (iv) Finally, round robin (RR) is
a partitioning-based scaling policy described in Sec. 3.3. To
accommodate non-integral scaling, TraceSplitter tweaks RR
(as well as TS-LWL and TS-RRR) to oversample requests,
which we evaluate in Sec. 4.4.
Original vs. Target Systems: To evaluate the difference be-
tween running in a larger original system vs. a smaller target
system,we use our cluster as our original system and a smaller
cluster as the target system. In most of our experiments, we
reduce the number of nodes in the web tier by half and down-
scale the original trace by 5 =0.5. We provision the original
system with 4 web tier nodes and the target system with 2
web-tier nodes. In both systems, we have 1 well-provisioned
node for each of Memcached, MySQL, load balancer, and

client. We collect metrics of interest from both clusters and
use them to evaluate the efficacy of our downscaling.

In Sec. 4.4, we also show results from using 5 =0.75. Trace-
Splitter is expected to work well with any value of 5 , although
care should be taken in selecting 5 . This is because trace
downscaling is an inherently lossy process, and aggressive
downscaling (lower value of 5 ) may result in downscaled
traces with hardly any requests. Hence, with very aggressive
downscaling, the downscaled trace is likely to preserve less
information from the original trace than with less aggressive
downscaling. Even in that scenario, however, TraceSplitter is
expected to perform better than current approaches due to it
preserving all the requests across the collection of downscaled
traces.
Traces: We use a combination of real-world/production and
synthetic traces. Experiments with real-world traces validate
the shortcomings of the state-of-the-art approaches we have
pointed out previously while demonstrating the efficacy and
robustness of our proposed approaches. We use synthetic
traces in Sec. 4.3 to take a more in-depth look into why/when
existing approaches fail and how TraceSplitter handles those
cases. The synthetic traces help us explore a richer space of
traces and establish that even in anomalous and extreme cases,
TraceSplitter significantly outperforms existing approaches.
Summary: We present a summary of our salient findings in
Tbl. 1, where the columns represent the different traces that
we use and the rows represent different downscaling methods.
4.2 Results with Production Traces

We use two different production traces in our evaluation:
(i) a web request trace from Microsoft’s OneRF system, (ii)
and a storage trace from SNIA IOTTA [3].
4.2.1 Microsoft Trace
The Microsoft OneRF trace was collected in February 2018
from a datacenter on the US East Coast. OneRF is a com-
mon web rendering framework that services web requests to
Microsoft’s storefront properties (microsoft.com, xbox.com,
etc.). This production trace tracks the high-level web requests
from users that arrive at OneRF, which connects to more
than 20 different backend systems. For each request, the trace
contains its arrival time and the identity of the backend that
would service it.
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Figure 4. Microsoft traces, see Sec. 4.2.1.
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Figure 5. Storage trace, see Sec. 4.2.2.

We design two different experiments that we label Case 1
and Case 2, each with about a 15 minute trace duration. Since
we do not have access to the OneRF code base, for each case,
we pick two backends from among the backends in the trace
and associate them with two request types in our Elgg setup.
Since the trace itself does not contain complete information
about request latency experienced on the original system, our
focus is on reproducing important properties of the arrival
process while making our own reasonable assumptions about
request sizes. To this end, we choose significantly different
service times between different request types and similar
service times within a request type.

In Case 1, the larger request type comprises 5.7% of the
requests and is on average 8.2⇥ longer in terms of service time
than the smaller request type. In Case 2, the larger request
type comprises 2.8% of the requests and is on average 3.7⇥
longer in terms of service time than the smaller request type.
Case 1, therefore, has a higher skew between the two request
types than in Case 2. The percentages of small/large requests
come directly from the OneRF trace, and the choice of service
time ratios mimics the heavy-tailed characteristics found in
real world traces [5, 50]. The particular request sizes replayed
are derived from the service time estimation in our system,
shown in Fig. 3.
Case 1: We observe from Fig. 4a that T-span and AvgRate
result in worse latencies than Original, with the gaps progres-
sively growing at higher percentiles. In this case, the system
is highly loaded especially during bursts, and T-span expands
the high load bursts over a longer period of time than origi-
nal, thus leading to higher tail latencies (detailed discussion

Ar
riv

al
 T

im
e

Tim e

Figure 6. Parameters for synthetic trace generation.

in Sec. 4.3). AvgRate, on the other hand, offers lower laten-
cies than Original due to averaging out the bursty periods
(detailed discussion in Sec. 4.5). The remaining downscal-
ing approaches more closely match Original, with TS-LWL
performing the best across all percentiles.
Case 2: Case 2 has a lower skew than Case 1 between the
resource needs of bigger and smaller request types, which
results in the policies more closely matching the Original
latencies as seen in Fig. 4b. The current downscaling ap-
proaches used in practice don’t necessarily lead to the skewed
results as shown in this case, but caution must be taken to
appropriately construct experiments when downscaling. For
example, AvgRate continues to offer slightly lower latencies
as described in Case 1. Our proposed approach, TS-LWL,
tends to more closely match the Original characteristics.

Overall, these results confirm that existing downscaling
approaches sometimes suffer from the shortcomings we set
out to address. These results also highlight how the fidelity of
downscaling is intimately connected to certain workload prop-
erties (e.g., the skewness between resource needs of resource
types in Cases 1 and 2), and our proposed TS-LWL approach
is more robust in handling these properties, as demonstrated
in Sec. 4.3.
4.2.2 Storage Trace
We also evaluate our work using publicly available SNIA
IOTTA storage traces collected from enterprise storage traf-
fic [29]. We select one of the traces that is appropriately sized
for our cluster and exhibits interesting phenomena such as
variation in arrival rates and burstiness. Although this trace
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Figure 7. Combined synthetic trace, see Sec. 4.3.
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Figure 8. Effect of burstiness, see Sec. 4.3.2.

comes from a different domain than Sec. 4.2.1, our careful
approach to using the trace ensures meaningful experiments.
Specifically, request arrivals are the only information taken
from this trace, and all requests are mapped to a single Elgg
request type with a fixed request size. Thus, our focus is on
the burstiness in the arrival process present in the trace.

Fig. 5 shows the latencies from this experiment. Similar
to the Microsoft traces, we observe again that T-span results
in higher latencies than Original while AvgRate results in
lower latencies. This is due to T-span making the burst du-
rations longer (details in Sec. 4.3.2) and AvgRate averaging
out the effects of the bursts. Since all requests have the same
size, TS-LWL, TS-RRR, and RR perform equally well in this
experiment, as expected, with all of these policies closely
matching the latency characteristics of the original system.
4.3 Synthetic Traces

In this section, we use synthetic traces to explore in detail
a number of trace properties that are affected by downscaling.
We identify and characterize the following properties: (i) fine-
grained burstiness in the arrival of requests, captured by two
parameters—burst duration and burst intensity; (ii) temporal
patterns in the arrival of requests (i.e., how the arrival rate
changes with time); (iii) variability in request sizes; (iv) any
patterns in the order of request arrivals (e.g., periodicity); and
(v) the extent and nature of rare request types present in a
trace.

The experiments in this section demonstrate how these
properties are affected by different state-of-the-art downscal-
ing approaches. To accentuate these effects, we synthesize
traces to amplify each of the properties individually. We also
synthesize a trace that exhibits the combined effect of all the

properties. Even when these properties are amplified, TraceS-
plitter performs well in downscaling the trace, whereas other
approaches fail to realistically downscale traces with some of
these properties.
Synthetic Trace Generation: The arrival process of our syn-
thetic traces is generated as a combination of two Poisson
processes with rates A0C41 and A0C42 (Fig. 6). A high value of
burst intensity, 1 = A0C41

A0C42
, helps generate a more bursty trace.

We define C1 to be the duration of each burst and C= to be the
interval between two successive bursts. We also define) = C1

C=
to represent the ratio between the bursty and non-bursty time.
We tune 1, C1 and ) to generate different types of bursts. For
the request sizes, we generate large and small requests accord-
ing to a ;0A64'4@D4BC�A02C8>= parameter (i.e., percentage of
large requests) and a B4AE824)8<4'0C8> parameter (i.e., ra-
tio of time to serve large vs. small requests). Depending on
the trace, we either select the large or small request size ran-
domly or according to a deterministic pattern (specified via
A4@%0CC4A= parameter).
4.3.1 Combined Synthetic Trace
We start with a synthetic trace that shows the aggregate effect
of all the factors listed in Sec. 4.3. The values of the trace pa-
rameters are:1 = 10, C1 = 4B,) = 0.5, ;0A64'4@D4BC�A02C8>= =
5%, B4AE824)8<4'0C8> = 12, A4@%0CC4A= = 34C4A<8=8BC82.
These parameters generate a trace with short high intensity
bursts (due to values of 1, C1 , and ) ) with a small fraction of
very large requests (due to values of ;0A64'4@D4BC�A02C8>=
and B4AE824)8<4'0C8>) that vary in a deterministic pattern.

Fig. 7 shows that the mean and different percentiles of
latency where RR, AvgRate, and T-span are significantly dif-
ferent from Original. The deterministic request size pattern
causes RR to produce unbalanced downscaled traces, which
leads to significantly skewed results in the downscaled exper-
iments. Both of TS-LWL and TS-RRR mimic the latency of
Original closely, with TS-LWL doing slightly better.

In the following subsections, we separate out which prop-
erties of the trace contribute to these performance behaviors
for different downscaling approaches.
4.3.2 Effect of Burstiness
Fig. 8 shows the effect of downscaling on a bursty trace. We
model the bursty trace where the values of the parameters are:
1 = 5, C1 = 4B, ) = 0.5, ;0A64'4@D4BC�A02C8>= = 0%. This
produces a trace that has short high intensity bursts (due to
values of 1, C1 , and ) ) and fixed request sizes.

AvgRate would have performed well (i.e., closer to Origi-
nal) for bursty traces if the time-interval for averaging arrival
rates is smaller than the burst duration. However, if the time-
interval is longer than the burst duration (as in Fig. 8), then it
can potentially average out the burst, resulting in lower laten-
cies than in Original. This effect can be viewed by comparing
the average request latency over time for Original and Av-
gRate in Fig. 9a and Fig. 9d respectively. TS-LWL, TS-RRR,
Rand, and RR result in similar latency performance over time,
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Figure 9. Bursty trace request latencies, see Sec. 4.3.2.

0 10 20 30 40 50 60

0
20

40
60

80
R

eq
/s

0 10 20 30 40 50

0
20

40
60

80

Time (s)

(a) Original.

0 10 20 30 40 50 60

0
20

40
60

80
R

eq
/s

0 10 20 30 40 50

0
20

40
60

80

Time (s)

(b) TS-LWL.

0 10 20 30 40 50 60

0
20

40
60

80
R

eq
/s

0 10 20 30 40 50

0
20

40
60

80

Time (s)

(c) T-span.

0 10 20 30 40 50 60

0
20

40
60

80
R

eq
/s

0 10 20 30 40 50

0
20

40
60

80

Time (s)

(d) AvgRate.
Figure 10. Effect of temporal pattern, see Sec. 4.3.3.

0

2

4

6

8

mean 50 pctl 90 pctl 95 pctl 99 pctl

La
te

nc
y (

s)

Original TS-LWL TS-RRR RR AvgRate Rand T-span
13.9 15.8 20.5

(a) Effect of different request sizes with deterministic pattern (b) Effect of different request sizes with random pattern
Figure 11. Effect of different request sizes, see Sec. 4.3.4.

closely matching Original. Thus, we only show the graph for
TS-LWL (Fig. 9b) since TS-RRR, Rand, and RR look very
similar.

One interesting outcome from the bursty trace is that the
latencies increase for T-span as shown by comparing Fig. 9a
and Fig. 9c. In T-span downscaling, we spread out the requests
over a longer duration to reduce the arrival rate experienced
by the system. For example, if we want to downscale a trace
in half, we essentially double the interarrival time between
requests. Intuitively, it seems like T-span should lower the
load in half. However, the load on the system after scaling
should be unchanged because while the arrival rate is halved,
the number of nodes in the system is also halved. This can be
problematic in bursty traces where the system is subjected to
transient high load and could even be temporarily overloaded
during the period of the burst. In these cases, the downscaled
system may be overloaded, but with T-span, it is overloaded
for a longer period of time, causing high latency for many
requests for a longer period of time.
4.3.3 Effect of Temporal Pattern
We create a trace that contains a temporal pattern where arrival
rates vary over time using the parameters: 1 = 2, C1 = 12B,

) = 1, ;0A64'4@D4BC�A02C8>= = 0%. This creates a trace that
alternates between high and low load periods (due to values of
1, C1 , and ) ) and fixed-size requests. We show the arrival rate
for every second for the first 60 seconds in Fig. 10. When the
trace is scaled by T-span, as shown in Fig. 10c, we see that the
temporal pattern has been stretched out where the high load
and low load periods are twice as long. Depending on how
the AvgRate time interval is set, AvgRate may average out
the temporal pattern (Fig. 10d). Neither of these approaches
accurately reflect the original temporal patterns. By contrast,
TS-LWL, TS-RRR, Rand, and RR accurately downscale the
trace; Fig. 10b shows the results for TS-LWL, and the other
policies are similar.
4.3.4 Effect of Different Request Sizes
To show the effect of different request sizes, we create traces
with a mixture of very large and small requests using the
following parameters: 1 = 1, ;0A64'4@D4BC�A02C8>= = 5%,
B4AE824)8<4'0C8> = 12. This creates a trace with a high vari-
ation in request sizes (due to values of ;0A64'4@D4BC�A02C8>=
and B4AE824)8<4'0C8>) while having no burstiness or load
variations. We create two such traces, one with a determin-
istic pattern of large requests and another with a random
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Figure 12. Effect of fixed arrival pattern, see Sec. 4.3.5.

pattern. The point of this experiment is to demonstrate that
approaches considering these differences in request sizes (i.e.,
TS-LWL) aren’t negatively affected by request size variability.
Fig. 11 shows that TS-LWL matches the latency of the origi-
nal trace most closely in both traces. This is because TS-LWL
is the only policy that considers request size, and since these
traces have variations with respect to request sizes, TS-LWL
outperforms the other policies. The deterministic pattern of
the first trace causes RR to have a much higher latency than
Original, as can be seen from Fig. 11a. This is because all
the large requests in the original trace were placed in one
downscaled trace. This uneven splitting of load causes the
latency values to spike in one downscaled RR trace. While de-
terministic traffic patterns may appear in practice when users
submit a sequence of related requests, we do not expect the
traffic to typically be so adversarial. Fig. 11b demonstrates
that RR behaves more like the other policies with traffic that
has a random pattern of large requests. However, TS-LWL
still matches the original latency most closely in these experi-
ments.
4.3.5 Pattern in Arrival Process
If workloads have particular patterns in the arrival process,
then they could affect deterministic partitioning policies like
RR. To show that effect, we create a trace with two differ-
ent request types that arrive in a deterministic pattern (e.g.,
one particular type of request arrives after the arrival of : re-
quests from a different type) using the following parameters:
1 = 1, ;0A64'4@D4BC�A02C8>= = 10%, B4AE824)8<4'0C8> = 6,
A4@%0CC4A= = 34C4A<8=8BC82. We do not introduce burstiness,
and the B4AE824)8<4'0C8> is due to the differing service times
for the request types. Because of the fixed pattern, RR ends up
putting all of one request type in one downscaled trace. One
other significant effect is that the two partitions of RR have
significantly different performance, which does not happen
for the policies of TraceSplitter as seen in Fig. 12.
4.3.6 Rare Events
Sometimes, preserving rare requests is important when down-
scaling, especially when these requests disproportionately
contribute to resource usage and, therefore, performance.
TraceSplitter guarantees that each request is included in at
least one of the downscaled traces. However, because of the
randomness in sampling, they could often be oversampled or
undersampled in Random sampling. We consider a synthetic

Figure 13. Rare events, see Sec. 4.3.6.
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Figure 14. Non-integral downscaling, 5 =0.75, see Sec. 4.4.

trace where 0.25% of the requests are large (and rare) requests
and the rest are small requests.

We show the percentage of the rare requests preserved in
each of the downscaled traces in Fig. 13. When we downscale
the Original trace, TS-LWL, TS-RRR, and RR will preserve
all of the rare requests across their partitions. T-span does
not discard any requests, so it will also preserve all the rare
requests. We randomly sample the Original trace 10 times
and the percentage of rare requests in the downscaled trace
shows variation. Random sampling drastically undersamples
rare events in some cases and oversamples in other cases,
as evident from Fig. 13. Although it also performs well in
some cases, it can lead to misleading results if the practi-
tioner ends up with one of the undersampled (or oversampled)
downscaled traces for their experiments. Similar to Random
sampling, AvgRate also picks requests randomly and will not
preserve rare requests every time, which is evident in the two
runs shown in the figure.
4.4 Non-Integral Scaling

We consider a case of downscaling where 5 =0.75. The
original trace is run in a system with 4 web servers while the
downscaled traces are run in a system with 3 web servers. The
workload is the same as the one described in Sec. 4.3.1. We
show how various approaches compare in Figure 14. TS-LWL
is able to match Original much more closely than TS-RR
(which shows significant deviation and variance) as well as
the baselines. TS-RR is the RR policy with TraceSplitter’s
approach for handling non-integral scaling.
4.5 Effect of Time Interval in AvgRate

The choice of the time interval is an important factor in
AvgRate scaling. For the same original trace, we pick time
intervals of 0.1 second, 1 second, and 10 seconds and compare
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Figure 15. Effect of time interval on AvgRate, see Sec. 4.5.

the output latency in Fig. 15. The latency profiles of the trace
downscaled by AvgRate with time intervals of 0.1 second
(Fig. 15b) and 1 second (Fig. 15c) match the original trace
(Fig. 15a) but that with time interval 10 seconds (Fig. 15d)
fails to do so. This is because the time interval is larger than
the burst length of the trace, as discussed in Sec. 4.3.2.
4.6 Sensitivity Study
Sensitivity to Randomness in Trace: We evaluate the sensi-
tivity of our approach to the randomness in the synthetic trace
generation to ensure our results are not specific to the exact
trace generated. We create three versions of each trace using
the same parameters so that they are statistically similar while
not being exactly the same. As an example, Fig. 16 shows
results from the other two traces that are generated from the
same parameters as the trace used for Fig. 7. All three sets of
results show the same trends, so we believe our insights are
not due to random chances in the trace generation.
Sensitivity to Service Time Estimation: TraceSplitter lever-
ages a user-provided function for the service time estimation
of requests in a given trace. Since TS-LWL does its partition-
ing based on the service time, incorrectly estimating service
time could potentially affect the partitioning. As an extreme
example, consider an estimator that indicates all requests have
the same service time. It turns out that this is precisely the
assumption in RR and TS-RRR. Hence, the performance of
RR and TS-RRR gives us insight into how service time esti-
mation affects TraceSplitter. We can see the effect of incorrect
estimation of service time by observing RR and TS-RRR in
Fig. 4a, Fig. 4b, Fig. 5, Fig. 12, Fig. 8, Fig. 11, and Fig. 7.
They show that this incorrect estimation leads to performance
degradation in RR, and incorporating randomness in that (as
done in TS-RRR) improves the performance. In general, when
there is high variation in request sizes, service time estimation
is important.
4.7 Statistical Testing

We perform a rigorous statistical test to further evaluate
how the performance from the different downscaled traces
compares to the performance from the original traces. To that
end, we compare the energy distance [41] between the distri-
bution of latencies of the original trace with that of the down-
scaled traces. Both the original and the downscaled traces are
run multiple times; they show some variability in their laten-
cies due to the inherent noise present in any system. Let the
empirical latency distribution of the original trace ) be)8 and

Policy

Overpro-
visioning %
suggested
by policy

SLO
violations
(out of 5

trials)

Average
P99 (ms)

Average
web tier

node count

AvgRate 0 5 18147 6.21
T-span 40 5 2757 8.56

Rand, TS-RRR 60 5 557 9.65
TS-RR, TS-LWL 70 0 425 10.34

Table 2. A sample result from our autoscaling case study.
that of the downscaled trace C be C 9 , where 8, 9 2 #A = number
of runs. We calculate the energy distance, 3 (- ,. ), of the la-
tency distribution of a downscaled trace from each of the runs
of the original trace, and take the minimum distance as the
distance between the two: i.e., 38BCC 9 = min882#A 3

�
)8 , C 9

�
. We

combine the energy distance for each run of the downscaled
traces by taking their mean. Since there is some variability
in latencies obtained from multiple runs of the same original
trace, we calculate the energy distance ⇡8 9 between every
two runs (8C⌘ and 9C⌘ run) of the original trace, and use the
maximum ⇡8 9 as a normalizing factor. The normalized energy

distance is then
Õ

92#A 38BCC 9
#A

⇥ 1
⇡8 9

.
A value of 1 or less for the normalized energy distance

would indicate a trace whose latency distribution closely
matches that of the original, with equal or less variability than
comparing multiple runs of the original trace against them-
selves. As the value increases from 1, the trace deviates from
the original. We plot the normalized energy distance for our
combined synthetic trace (Sec. 4.3), storage trace (Sec. 4.2.2),
and Microsoft trace (case 1) (Sec. 4.2.1) in Fig. 17. We see
that TS-LWL and TS-RRR perform well for the combined
synthetic and storage traces. All downscaling methods per-
form worse than 1 for the Microsoft trace, though TS-LWL is
closest to 1 among them.

It is important to note that energy distance is a very strin-
gent measure for equivalence because it considers the entire
distribution (all percentiles, not just the median, 95C⌘ per-
centile, etc.). Since trace downscaling is an inherently lossy
process, we cannot expect the downscaled traces to meet
this expectation, but this experiment shows that our approach
outperforms the current state-of-the-art in synthetic and real
traces.

5 Case Study: Autoscaling a Web Application
The evaluation above demonstrates TraceSplitter’s efficacy

at preserving the latency metrics of an application on an
original system, when running downscaled traces on a smaller
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(a) Combined synthetic trace: Version-2 (b) Combined synthetic trace: Version-3
Figure 16. Different versions of combined synthetic trace
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Figure 17. Energy distance

target system. In this section, we show that TraceSplitter can
be used to inform policy decisions for an application, by
leveraging its preservation of latency metrics. Specifically,
we use TraceSplitter to optimize a policy parameter on a
smaller target system w.r.t a performance SLO, and show that
the optimized parameter delivers the expected performance
in the original system.

The application we consider is an autoscaler that scales
a web application tier based on the arrival rate of requests
in the system. The autoscaler uses the Square Root Staffing
rule [24] to determine the number of web tier nodes required,
with an overprovisioning factor of 2 > 0: i.e., if the Square
Root Staffing rule requires : nodes, the autoscaler allocates
(c +1 ) ⇥ k nodes. Our goal is to find the minimum value of 2
that allows us to meet a performance SLO of 99C⌘ percentile
latency (P99) < 500 ms. For the web application we use
Wikimedia with a MySQL database as the backend, and front
it with an Nginx load balancer. The autoscaler controls the
number of web-tier nodes and informs Nginx of any changes
so that it load balances over the current set of nodes.

We drive the Wikimedia application with a synthetic work-
load that captures several of the key properties identified in
our evaluation, including a diurnal pattern and periodic sharp
bursts. We vary the period of the diurnal pattern and the fre-
quency and magnitude of the bursts to generate a set of 86
different traces. For each trace, we first run it while varying
the overprovisioning in increments of 0.1, i.e., 2 = 0.1, 0.2,
etc., and determine the optimal value of 2 that meets our P99
latency SLO. We observe that some traces require very little
overprovisioning or too much overprovisioning; since these
traces fail to distinguish the different downscaling approaches
or run into experimental setup limitations, respectively, we

limit our focus to traces with optimal c 2 [0.3, 0.8]. This
results in selecting 30 of those 86 traces for further investiga-
tion.

We then downscale each trace with a scaling factor of 0.5
using each of the different downscaling approaches, and run
these traces while varying 2 as above. It is worth noting that in
this case-study, there are no fixed original and target system
sizes like the ones used in Sec. 4 since the autoscaler automat-
ically adjusts the size of the system according to the arrival
rate, leading to different number of web application nodes
being used for the original and downscaled trace. We then
compare the optimal value of 2 determined by each downscal-
ing approach with the ground truth value determined using the
original system. Across all of the traces, TS-LWL performs
as well or better than the other downscaling approaches, in
that it finds an optimal value of 2 that is equal (or closest)
to the optimal value in the original system. Tbl. 2 shows an
example from one of the traces. In this example, only TS-
LWL and TS-RR find an overprovisioning value that meets
the P99 latency SLO (2 = 0.7); the remaining approaches all
underprovision.

The reason AvgRate performs poorly is because it assumes
the arrival rate follows a Poisson process (similar to the as-
sumption made by the Square Root Staffing rule), and thus
fails to capture the bursts in the original trace. T-span does
poorly because it stretches out the bursts, making the au-
toscaler think it has more time than it actually does to react
to the bursts. In contrast, TS-LWL and TS-RR preserve the
bursts faithfully and hence yield an overprovisioning value
that is high enough to accommodate the bursts.

6 High Level Takeaway
There are a number of takeaways from our investigation

into trace downscaling. T-span performs poorly because it
distorts the temporal properties. A less intuitive effect of T-
span is that when dealing with bursty traces, it stretches the
bursts to last longer, causing the system to be overloaded for a
longer period of time than the original trace. Model-based ap-
proaches are in general good candidates for downscaling, but
require a lot of attention, effort, and insights from the practi-
tioners to create an accurate model. Since the models need to
be adapted for different traces and use cases depending on the
metric of interest, it is difficult and time consuming to do this
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correctly. In many cases, since creating the model is orthogo-
nal to the main research objective, researchers may not invest
as much effort in model creation, leading to inaccurate models
that might miss many key characteristics. Random sampling
can potentially oversample or undersample rare events due to
its inherent randomness.

To address all of these problems, we propose TraceSplitter,
which can be used to preserve the arrival patterns of the
requests and their performance (i.e., latency) characteristics.
However, we do not claim TraceSplitter to be a silver bullet for
all downscaling problems. Being an inherently lossy process,
downscaling will always miss out on something in a particular
downscaled trace. What TraceSplitter provides is a framework
for preserving all requests if the user runs all the downscaled
traces one after another. That way, one can compensate for
not having a big enough experimental setup by spending
more time running experiments. And if one does not have
the time to do this, they can still run a random subset of
the downscaled traces generated by TraceSplitter and obtain
accurate results. Of the TraceSplitter policies, we find that
TS-LWL and TS-RRR perform the best in preserving arrival
patterns and performance characteristics, as demonstrated by
our experiments and our case study.

7 Conclusion
TraceSplitter introduces a new framework for downscaling

traces based on the idea of viewing the trace scaling problem
as a load balancing problem. Using this idea, we implement
multiple trace downscaling algorithms in TraceSplitter and
perform an extensive evaluation across a wide range of real-
world and synthetic traces. Our results demonstrate how cur-
rent practices for downscaling traces are inaccurate for some
workload patterns. For example, current practices can mask
effects such as burstiness and temporal variations. Our new
method (TS-LWL) achieves the best downscaling accuracy
across our experiments. TraceSplitter is available as an open-
source tool at https://github.com/smsajal/TraceSplitter to
benefit the community and improve the standard practices in
working with traces.
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