
This paper is included in the Proceedings of the 19th USENIX Symposium
on Operating Systems Design and Implementation.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-47-2

Open access to the Proceedings of the 19th USENIX Symposium
on Operating Systems Design and Implementation is sponsored by

Mako: Speculative Distributed Transactions
with Geo-Replication

Weihai Shen, Stony Brook University; Yang Cui, Google;
Siddhartha Sen, Microsoft Research; Sebastian Angel, University of Pennsylvania;

Shuai Mu, Stony Brook University

https://www.usenix.org/conference/osdi25/presentation/shen-weihai

Mako: Speculative Distributed Transactions with Geo-Replication

Weihai Shen† Yang Cui§ Siddhartha Sen‡ Sebastian Angel⋆ Shuai Mu†

†Stony Brook University, §Google, ‡Microsoft Research, ⋆University of Pennsylvania

Abstract
This paper introduces Mako, a highly available, high-
throughput, and horizontally scalable transactional key-value
store. Mako performs strongly consistent geo-replication to
maintain availability despite entire datacenter failures, uses
multi-core machines for fast serializable transaction process-
ing, and shards data to scale out. To achieve these properties,
especially to overcome the overheads of distributed transac-
tions in geo-replicated settings, Mako decouples transaction
execution and replication. This enables Mako to run transac-
tions speculatively and very fast, and replicate transactions
in the background to make them fault-tolerant. The key inno-
vation in Mako is the use of two-phase commit (2PC) specu-
latively to allow distributed transactions to proceed without
having to wait for their decisions to be replicated, while also
preventing unbounded cascading aborts if shards fail prior to
the end of replication. Our experimental evaluation on Azure
shows that Mako processes 3.66M TPC-C transactions per
second when data is split across 10 shards, each of which
runs with 24 threads. This is an 8.6× higher throughput than
state-of-the-art systems optimized for geo-replication.

1 Introduction

Highly available and reliable serializable transactional stor-
age systems (e.g., Google’s Spanner [20]) are the founda-
tion of many Internet services. To achieve high availability
despite datacenter failures, data is replicated across datacen-
ters [7,20,30,98]. To support ever-increasing amounts of data
and request volumes, data is partitioned into many shards.
A distributed transaction is used to guarantee consistency
whenever the application needs to access data across shards.

The main drawback of these systems is that the coordi-
nation required by distributed transactions introduces great
inefficiencies, to the point that the throughput that one can
achieve with a single in-memory multi-core transactional key-
value store is thousands of times higher than what distributed
transactional systems typically provide [50, 55, 59, 60, 95]. At
the same time, we cannot just replace a distributed transac-
tional system with a fast single-machine variant because of
the need for fault-tolerance and scalability.

Since an obvious bottleneck in distributed transactions is
that the network latency is orders of magnitude higher than the
CPU-memory latency, a trend in accelerating distributed trans-
actions is to adopt ultra-low latency networking technologies

such as RDMA and smart NICs [11,17,25,46,74,90,91,106].
However, these techniques are most effective within a datacen-
ter. In geo-replicated systems, the benefits of kernel bypass
and faster local networks are negligible compared to the long
latencies that are fundamental to wide-area networking.

Given the above, in this work we ask the question: can
the throughput achieved by distributed transactions in geo-
replicated settings approach that of transactions within a
single machine? Answering this question in the affirmative
has the potential to reduce the amount of machines that ex-
isting storage systems need to meet their current demands,
while also empowering new applications that require high-
throughput strongly consistent geo-replicated transactional
storage (e.g., Nimble [5], Zanzibar [75]). But to realize this
promise, we need to fundamentally rethink how we design
distributed transaction protocols in the first place.

After a close examination, we conclude that a key limita-
tion of current designs of distributed transaction protocols is
the tight dependence between the two main building blocks:
the transaction coordination and the replication protocols.
Consider for example Spanner [20], which uses two-phase
commit (2PC) as its coordination protocol to perform dis-
tributed transactions. Since 2PC is not fault-tolerant, Spanner
synchronously geo-replicates all of the decisions made by
2PC participants (storage shards) after every step of the pro-
tocol. This ensures that failures are recoverable.

Several distributed transaction systems such as Tapir [109],
Ocean Vista [30], and Janus [69] argue that transaction co-
ordination and replication should be coalesced into a single
protocol (an even tighter coupling) in order to avoid paying
for common functionality twice. We argue that the opposite
should be the case in WAN settings: that transaction coordi-
nation and replication should be decoupled even further! Our
observation is that fully decoupling these two components
allows the system to perform work speculatively, thereby
masking the high overhead introduced by geo-replication.

To explore the benefits and limitations of this idea, we
build Mako.1 Mako is the first transactional sharded key-value
store that hides the cost of geo-replication by speculatively
processing distributed transactions. Of course, the idea of
using speculation in transactional databases is not new. Prior
to Mako, works like Rolis [85] and Amazon Aurora [98]
leverage speculation to speed up transaction processing. But
Rolis only has a single shard (and therefore cannot scale to

1Mako sharks are known for migrating long distances.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 129

large databases), while Aurora does not support transactions
across shards. The fundamental reason for this is that in an
ideal world, when one performs a speculative cross-shard
transaction, as soon as the transaction finishes executing one
wants to start processing the next transaction without having
to wait for the geo-replication to complete (otherwise we are
back to square one where the geo-replication is the bottleneck
for transaction processing). But if one starts executing other
transactions that depend on values written by a speculative
transaction before it has been geo-replicated, then the system
can end up in a situation where a speculative transaction fails
and then all transactions that depend on it must abort (and
the transactions that depend on the aborting transactions also
must abort, etc.). Such a cascade of aborts is troubling in
part because in a concurrent and asynchronous system it is
hard to efficiently track which transactions depend on the
failed transaction. Without enough information, the cascade
could become unbounded [28, 36, 79], and require pausing
the system and aborting all pending transactions.

Mako’s key technical contribution is precisely to introduce
an architecture that allows it to safely speculate without hav-
ing to wait for the results of geo-replication, while keeping
track of very little information that is efficient to collect and
yet sufficient to avoid unbounded cascading aborts.
Overview of Mako. Mako first executes and certifies the
transactions among shard leaders. Shard leaders are in-
memory multi-core stores that run a fast concurrency control
protocol tailored for single-machine multi-core databases [85].
If some (or all) of these leaders are in the same datacenter,
Mako uses a fast networking stack (DPDK) to connect them.
At this stage, there is no replication so all transactions have
been executed speculatively and the clients have not yet re-
ceived a response. In the background, Mako performs parallel
state-machine geo-replication across datacenters while also
continuing to speculatively execute new transactions. On suc-
cessful replication, the multi-core follower replicas will deter-
ministically replay the execution results of the leader shards.
Should something happen that prevents the replication from
completing, Mako rolls back the speculatively executed trans-
actions and makes sure that all live replicas are in a consistent
state [38, 76] before moving on. Clients are notified after the
replication completes.

For transaction coordination, Mako uses two-phase commit
(2PC) speculatively. This means that if a shard leader fails
before the 2PC result is replicated, the transaction’s result be-
comes unrecoverable and the transaction must abort. To avoid
unbounded cascading aborts, Mako uses a distributed vector
clock (§4.2) as a coarse-grained dependency tracking method,
and combines it with a vectorized watermark technique to
selectively roll back only the affected transactions (§5.2).

Our evaluation of Mako on Azure as well as several state-of-
the-art baselines show that Mako’s throughput is the highest
among all in the setting of geo-replication by at least 8.6× (at
10 shards) while introducing little additional latency. When

we consider a setting without geo-replication (a single data-
center, which is not the setting for which we designed Mako),
Mako’s throughput is 50% lower than prior RDMA-based sys-
tems that tightly couple replication and concurrency control.

2 Background and motivation

In this paper, we study sharded and geo-replicated in-memory
key-value stores that support transactions at very high through-
put (close to a single-machine multi-core database) and with
strong isolation (serializability). To the best of our knowledge,
no existing data store achieves all of these goals. We discuss
why this is the case next.

2.1 Limitations of existing designs
We take a closer look at existing designs to see where the
core issues arise. One thing we find is that systems like Span-
ner [20] and FaRM [25] follow a classic approach: overlay
the distributed transaction protocol on top of the replication
protocol. That is, they use replication to checkpoint the key
steps in transaction execution and commit.

The workflow of these systems is roughly as follows. A
transaction first executes: it accesses data from different
shards. During the execution, the system applies locking or op-
timistic concurrency control to avoid inconsistent accesses. At
the end of execution, the system tries to certify (commit) the
transaction. This is done via a two-phase commit (2PC) across
all participating shards. To make the system fault-tolerant, the
system applies replication (e.g., primary-backup in FaRM;
Paxos [13, 21] in Spanner) to each critical step. For example,
Spanner replicates the prepare phase and the commit phase in
2PC. Since this is expensive, prior works [30, 69, 109] opti-
mize the geo-latency by mixing the replication and transaction
protocols. But overall, the transaction certification decision is
not known until replication finishes.

By looking at this design we can make two observations.
First, it explains why distributed transactions can be a thou-
sand times slower than multi-core transactions: the transaction
execution and 2PC involve network messages, whose latency
is a thousand times higher than the CPU-memory latency. In
recent years, with the deployment of advanced networking
hardware and kernel bypassing techniques, this issue can be
mitigated within a datacenter. For example, FaRM [25, 26]
equipped with RDMA can reduce the remote access latency
and achieve very high per-shard throughput.

However, our second observation is that this problem can-
not be addressed by advanced hardware in the setting of geo-
replication, because the latency across datacenters will nev-
ertheless remain high. In this case, the latency introduced by
replication will result in a distributed transaction requiring
tens (hundreds, or even thousands) of milliseconds to finish
the certification. If we stick to the conventional architecture,
there is no obvious way to address this issue.

130 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

One might argue that we can perhaps address the problem
by increasing the number of concurrent requests to hopefully
saturate the system’s throughput. Normally, even though the
latency is high, a system can still achieve high throughput if it
can process many concurrent requests. This is unfortunately
not true in the case of transactional systems. The throughput
of transactional systems is sensitive to the contention in its
workload. In most cases, increasing the number of concurrent
requests increases contention too. For example, many Ama-
zon customers buying the same items. As has been noted in a
lot of prior work [42,68,82,105,109] and our own experiments
(§7.6), more concurrency actually lowers throughput.

3 Challenges and key ideas

Given that in geo-replication the high latency of the transac-
tion certification will inevitably decrease throughput, one way
forward is to remove replication from the critical path of trans-
action coordination [78,94]. One example of a prior work that
follows this principle is Calvin [94], which pre-determines
the order of transactions into a totally ordered log, and then
ships this log to remote replicas. The challenge with a design
like Calvin’s is that if the servers are fast multi-core machines,
it is really hard for the log replay to be as fast as a multi-core
storage server (e.g., Silo [95]) that processes the transactions
without any pre-determined order. Therefore, the system’s
throughput is limited. We demonstrate this empirically in
our evaluation (§7). Mako avoids this issue by decoupling
transaction coordination and replication in a different way.

In a nutshell, Mako works as follows. A transaction ex-
ecutes and uses 2PC to certify the transaction among the
shard leaders. No replication takes place during the execu-
tion and 2PC. Since the leaders accessed by a transaction
are very often strategically deployed in the same datacen-
ter [18, 20, 83, 86, 89], we use kernel bypass network acceler-
ation (DPDK) to reduce the intra-datacenter latency. When
Mako successfully certifies a transaction, the transaction’s
writes become speculatively visible to later transactions, and
its log entry is replicated in the background to other datacen-
ters. In the foreground, Mako goes on to execute the next
transaction speculatively without being blocked by the repli-
cation. Note that Mako does not return the results to the client
until the replication finishes. In this way, Mako can increase
the throughput of the system, while maintaining a similar
latency as prior works that provide strong consistency.
Challenges. We face three main challenges.

Challenge 1: How to speculate with 2PC in the presence
of failures? A problem with speculative execution is that roll
backs are required when speculation fails. For example, if
there was a problem replicating the transaction’s result, we
may need to revert the transaction. Mako faces the extra chal-
lenge that the speculation spans multiple shards. Consider the
following example. Suppose that we speculatively execute
transaction T0 over shards S0 and S1, then speculatively exe-

cute transaction T1 (which depends on T0) over shards S1 and
S2, and finally speculatively execute transaction T2 (which
depends on T1) over shards S2 and S3. Suppose that before T0
finishes its replication protocol, shard S0 fails. If we are using
2PC for the coordination (as is the case in Mako), losing a
participant in 2PC means the transaction is now unrecover-
able and must be aborted. But notice that even though T1 and
T2 operate on shards that did not fail and their replications
may have even succeeded, because they transitively depend
on T0—which is unrecoverable—they too must abort.

The crux of the issue is that 2PC does not interact well
with speculation and failures. One may think that we could in-
stead use a fault-tolerant version of 2PC, namely three phase
commit (3PC) [87], but this is also not the case. In the above
example, if shards S0 and S1 fail, transaction T0 cannot be re-
covered since 3PC cannot handle all of its participants failing.
And while T1 can recover from S1’s failure, it depends on T0,
so it too must abort. Finally, T2 had nothing to do with any of
the failing shards but it also must abort because it depends on
failed transactions. In other words: the per-transaction fault
tolerance of 3PC [49] does not extend across transactions,
and hence it does not preclude cascading aborts.

Challenge 2: How can we avoid the overhead of serializing
transaction results into a sequential log?2 This is the main
challenge in achieving high throughput. One reason that multi-
core transactions are fast is that they avoid generating a global
serialization order among all transactions. If we adopt the
traditional approach of using one log per shard (e.g., Spanner),
this will limit performance [8, 15, 19, 20].

Challenge 3: How can we sequence conflicting log entries
from different logs? As different cores may access the same
data, they could write conflicting entries to different logs.
When followers replay these logs, how do we guarantee that
the replay will lead to the same state as the leader?

Key ideas. Mako cannot prevent cascading aborts. What
Mako does, however, is to bound the impact of failed spec-
ulation. To address challenges 1 and 3 while retaining good
performance, Mako introduces a distributed vector clock as a
coarse-grained dependency tracking method, and a vectorized
watermark to selectively rollback affected transactions, while
allowing uninvolved transactions to continue executing. To
address challenge 2, Mako uses one log per core and ideas
from prior work [85], but data is not sharded across cores
(multiple cores may access the same data).

4 Design of Mako

In this section, we will describe the main ideas of Mako. We
first give an overview and then provide the details of how
Mako processes transactions.

2Serialization here refers to ordering concurrent requests into a sequence,
not converting a data structure into a byte stream.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 131

4.1 Overview

Figure 1 shows the architecture of Mako. A Mako deploy-
ment splits its data (key-value pairs) into multiple shards.
Each shard is replicated to multiple datacenters with a leader-
follower architecture. Similarly to Spanner [20] and other geo-
replicated databases, the leaders of different shards (“shard
leaders”) in Mako can be in different datacenters, but it is ad-
vantageous for performance reasons to ensure that the shards
that are often accessed together in transactions have their
leaders co-located in the same datacenter. In practice, many
workloads show such a strong data locality [14, 18, 53, 96].
For example, in a car sharing application such as Uber or Lyft,
each ride could be expressed as a transaction between the
user, the driver, and the start and destination. The data of all
of these entities could be sharded and distributed according
to geographic locations [96]. Most transactions will happen
locally within a city and hence within the same datacenter,
while a few transactions will cross datacenters (e.g., travel
from one city to another).

A transaction enters Mako and goes through the following
phases before it is finished.

Execution: A shard leader serves as the coordinator for the
transaction execution. The coordinator executes the transac-
tion by optimistically reading from different shard leaders (as
needed), and buffering the writes. Reads for some key at a
given shard leader return the most recent writes to that key,
including those that are certified (explained below) but not
yet replicated, but they will not return uncertified writes.

Certification: After the execution, the coordinator will run a
2PC-based procedure among the shard leaders to confirm that
there are no conflicting transactions. The transaction will be
assigned a version vector clock. This vector clock represents
the serialization order of the transaction. Note that so far no
replication has happened, and the transaction is not considered
done. Therefore, the transaction “commit” is speculative, with
a chance of rollbacks in case of failures. But after certification,
writes are speculatively installed and are ready to be read by
later transactions. Hence, if rollbacks happen, they can have
a cascading effect (one rollback triggering another rollback).

Replication: Each shard runs multiple Paxos instances, one for
each core (worker thread), to replicate transactions’ logs to fol-
lowers after certification. To maximize throughput, the repli-
cation process is completely independent for each shard/core—
different shards/cores have zero coordination.

Replay: The followers need to replay from the per-core log
to reconstruct the same state as the leader. Because the repli-
cation phase skips coordination across shards and cores, the
dependency information across shards and cores is missing.
Without such information, the replay could lead to inconsis-
tent states. To address this, Mako designs a decentralized
and lightweight mechanism, the vector watermark, to track
dependencies of distributed transactions for safe replay (§4.3).

Shard
followers

Replication
S
0

S
1

S
2

Shard
followers

Replay

Shard
leaders

Speculative
Execution

Txn Reply

PipelinedSync

Progress-checking for both replication and dependencies

Figure 1: The architecture of Mako. Shard leaders can be in
the same datacenter or in different datacenters. Shard follow-
ers are in other geographic locations. Results are returned to
the client only after replication completes.

4.2 Speculative execution and certification
Mako extends Silo’s [95] single-node optimistic concurrency
control (OCC) protocol to a distributed variant of OCC. Every
shard leader in Mako can receive a one-shot transaction (i.e.,
a transaction that includes all operations, sometimes termed a
non-interactive transaction) from a client. Upon receiving that
request, the shard leader becomes the transaction coordinator
and will execute the transaction on behalf of the client. For
reads, the transaction coordinator performs optimistic reads of
key-value pairs. It maintains a ReadSet, which includes all the
records read with their versions (defined below). For writes,
the coordinator buffers them into a WriteSet that stores the
new state of the record locally without explicitly coordinating
with other transactions; these are not installed until they have
been validated. Records that have been both read and modified
are present in both the ReadSet and WriteSet. In the absence
of failures, reads recorded in the ReadSet reflect the latest
version of the corresponding keys.
Version vector clock. The version in Mako is a vector clock
that consists of n individual logical clocks (c0,c1, ...,cn−1),
where n represents the total number of shards in the deploy-
ment. Each element represents a logical clock value gener-
ated by a shard. The logical clock on each shard increases
monotonically. In our implementation, this is generated by
an atomic fetch_and_add instruction as it fits our needs. If
higher per-shard scalability is desired, one can use the rdtscp
instruction as done in previous works [51, 66, 85, 92]. Further,
Section 6.1 discusses how Mako represents this clock when
there are thousands or millions of shards to keep the system
scalable.
Transaction certification. After a transaction executes, the
system needs to certify that there are no conflicts with con-
current transactions. The certification includes 4 rounds of
RPCs among the leaders of involved shards (single-shard
transactions perform no RPCs).

132 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1. Lock. The coordinator attempts to acquire locks for the
records in the WriteSet from the involved shards. Lock re-
quests are sent in parallel. During the lock acquisition, if any
lock is already held by another transaction, the lock request
fails and the attempting transaction is aborted.
2. GetClock. After locking the WriteSet, the coordinator asks
each involved shard to increase and return its latest logical
clock to create a vector clock. The coordinator then combines
this vector clock with all the vector clocks in the ReadSet to
generate a vector clock that serves as the transaction’s commit
version. The rule for combination is choosing the maximum
clock value for each shard.
3. Validate. The coordinator then contacts the relevant shards
to check all the records in the transaction’s ReadSet. If there
is a conflict on any of the keys (i.e., the latest version has
changed or the lock bit has been taken), the coordinator will
abort the transaction. This is to ensure that the versions of all
read data at the serialization point are the same as the versions
seen during the execution phase.
4. Install. If all validations succeed, the coordinator sends
RPCs to the relevant shard leaders to speculatively install the
writes. Old versions are not discarded immediately in case
the speculatively installed versions need to be rolled back.

Validate and Install are essentially 2PC’s prepare and com-
mit phases. We choose not to use 2PC’s naming to avoid
confusion about the commit point, as the transaction is not
fully “committed” yet since it is pending replication.

After the above 4 RPCs are done the certification phase is
complete and the transaction’s state moves to CERTIFIED. So
far, all communication has occurred among the shard lead-
ers. If the leaders are co-located, this means that no cross-
datacenter communication needs to take place and Mako can
use fast networking (DPDK).

Use vector clock to coarsely track dependencies. Mako
needs to track read dependencies between transactions that
have been certified and speculatively installed to prepare for
possible rollbacks. If transaction T1 reads T2’s write, then T1
(read-)depends on T2; if T2 reads from T3, then T1 transitively
depends on T3. If T1 (transitively) depends on TN , Mako en-
sures that T1’s version vector clock is always greater than TN
in a pair-wise manner. This is the key invariant in Mako that
ensures the correctness and the efficiency of rollbacks. (If T1
is a read-only transaction, T1’s version could equal T2’s.)

For example, in Figure 2 there are 3 shard leaders S0–S2,
and each shard stores 3 keys respectively. The dependency
relationships are as follows: T2 depends on T1, T1 depends
on T0, and there is a blind write between T3 and T2. A possi-
ble set of versions for this scenario could be T0: (1,0,0), T1:
(1,1,0), T2: (1,2,1), T3: (0,3,0). In this example, T0 ≤ T1 ≤ T2
in pair-wise comparison, while T3 and T2 are incomparable,
indicating that they are not read-dependent with each other
(e.g., commutative or blind write). Note that T2 must be pair-
wise comparable to T0 as they are transitively read-dependent.

Incomparable

Dependent

T1 T2T0

T3

S0 (a,b,c)Keys: S1 (d,e,f)S2 (g,h,i)

T0

T1

T2

T3

ReadSet WriteSet
Vector
ClockOperations

W(a);

R(a);W(d);

R(d);W(d);W(g);

W(e);

(1,0,0) (1,0,0)

(1,0,0) (0,1,0) (1,1,0)

(1,1,0) (0,2,1) (1,2,1)

(0,3,0) (0,3,0)

Figure 2: Transitive transactions: version vector clocks reflect
all potentially explicit or implicit dependencies. There are 3
shard servers S0 −S2, and 4 transactions: T0–T3.

If two transactions are incomparable, our vector clock still
reflects the correct serialization order from the leader (e.g., T3
has to be replayed after T2 on the followers of shard S1).

4.3 Replication with Paxos streams
There are two types of logs in Mako: a transaction log and
a per-core replication log (which we call a stream to avoid
ambiguity). A transaction log contains the key-value pairs in
the WriteSet of the transaction, and its commit version vector
clock. In contrast, each entry in a stream corresponds to a
batch of transactions (400 in our implementation).

Once a transaction is speculatively installed in the shard
leaders, the transaction enters the replication phase. During
this phase, each worker thread within each shard maintains
a separate stream of the transactions that will be replicated.
Mako then uses MultiPaxos [16] for replication (a separate
instance for each core), but it could use any leader-based repli-
cation protocol that is safe under an asynchronous network.

Note that we use per-core streams rather than a single
stream for the entire shard because prior works [85, 90] have
shown (and we have confirmed) that the throughput of a sin-
gle MultiPaxos stream plateaus after ≈ 10 worker threads
due to expensive thread synchronization overhead. Further,
the reason that each stream entry corresponds to a batch of
transactions instead of a single transaction is to eliminate the
frequent RPC overhead; all other works in the literature do
the same. While batching could introduce additional latency,
Mako operates at high throughput so it builds batches fast; the
geo-latency of replication is by far the dominant contributor
to the end-to-end latency experienced by clients.

4.4 Record-Replay on the followers
When a new Paxos stream entry is durable, a follower cannot
replay the entry just yet since this might lead to an inconsis-
tent state in the event of failures. Consider two transactions T1
and T2 in Figure 3. The system has two shards to store bank
checking and saving information separately. Initially, Alice’s
savings account holds $100, while Bob has a bank balance
of $0. In T1, Alice transfers her balance from the savings ac-
count to the checking account, and then in T2, Alice transfers
$100 from her checking account to Bob’s checking account.
T1’s two operations will be replicated independently by two
Paxos streams as they are on different shards. However, in
the event that the saving account shard fails, two potential
outcomes may arise, both of which can lead to an inconsistent

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 133

T
1

T
2

W(AliceS, 100-100) W(AliceC, 0+100)

W(AliceC, 0+100-100) W(BobC, 0+100)

op#1 op#2

op#3 op#4

Saving shard Checking shardIncomplete cross-shard
transaction replication

Missing dependent
transactions

Figure 3: Alice withdraws $100 from her savings account to
her checking account and then transfers it to Bob.

S
0

S
1

S
2

(1,*,*)

(3,*,*)

(4,*,*)

(8,*,*)

(9,*,*)

(2,*,*)

(5,*,*)

(6,*,*)

(7,*,*)

(*,1,*)

(*,2,*)

(*,5,*)

(*,8,*)

(*,3,*)

(*,4,*)

(*,9,*)

(*,12,*)

(*,13,*)

(*,*,2)

(*,*,3)

(*,*,4)

(*,*,9)

(*,*,12)

(*,*,1)

(*,*,5)

(*,*,6)

(*,*,8)

min(3,5)
 shard watermark-0

min(2,12)
 shard watermark-1

min(4,5)
 shard watermark-2

 Vector watermark: (3, 2, 4) if (ProgressCheck()){

Replay;

} else {
Queued;
Future checking;

}

3

4
replicated

to be replicated

R
eplication

1

2

Worker-0 Worker-0 Worker-1 Worker-0 Worker-1Worker-1

Local clock
is monotonic

Figure 4: Example replay procedure for shard followers with
2 worker threads per shard. Replay is performed by advancing
the vector watermark. Mako only tracks the clock relevant to
each shard (we mark the irrelevant entries with *).

state. The first outcome is incomplete cross-shard transaction
replication. For instance, op#2 in T1 is successfully replicated,
while op#1 is lost after a failure. It is unsafe to only replay
op#2 on one shard follower. The second outcome involves
missing dependent transactions. Although all operations in
T2 are replicated, T1’s may not be (i.e., op#1 is lost). Mako
cannot replay T2 either, as otherwise the system will be in a
state where Alice never sends money, but Bob receives $100.

To address this issue, Mako borrows the idea of Aurora [99],
Rolis [85], and Query-Fresh [99] in which system perfor-
mance is optimized by pipelining replication and utilizing
one monotonically increasing number to track the durability
of concurrent transactions within one shard or one database in-
stance. However, this approach will not work out of the box in
multi-shard, geo-replicated systems since the monotonically
increasing number would become a centralized bottleneck.
To correct this, Mako introduces a lightweight, decentralized
vector watermark scheme to enable safe replay.

A vector watermark is an array of shard watermarks (w0,
w1, . . . , wn−1) where n equals the number of shards. Each
shard watermark wi is calculated by shard-i independently. On
shard-i, Mako maintains an invariant that each Paxos stream
has a local and monotonically increasing clock value that
represents the shard clock of the most recently replicated
transaction. Shard-i chooses the minimum of these clock
values from all worker threads. Figure 4 shows an example.

1 Each watermark wi represents the current replication
progress of shard-i in the system. It is monotonically increas-
ing. 2 All shards will periodically gossip with each other
to exchange their latest vector watermark. The gossip is per-
formed in the background and does not block transactions’
execution. 3 Once progress-checking, a safety-checking
mechanism, succeeds at the followers, 4 the transactions
are sent to the replay threads for concurrent replay. We dis-
cuss progress checking and concurrent replay in detail later.

For a coordinator to acknowledge the transaction’s result
to the client, Mako waits for the system’s vector watermark
to advance beyond the transaction’s version. This ensures
that the transaction and all transactions it depends on have
been durably recorded on all relevant shards, providing a con-
sistent and reliable commit acknowledgment to the client.
More formally, if a transaction with version vector clock
(c0, c1, ..., cn−1) has ci ≤wi,∀i∈ [0,n−1], its transaction log
must be already replicated in the Paxos stream of shard-i. With
this guarantee, a transaction can transition to COMMITTED and
return back to the client.

Progress-checking phase. In this phase, Mako actively ver-
ifies whether a transaction’s version falls below the latest
vector watermark. If it does, the transaction proceeds to the
replay phase, indicating that all transactions it depends on,
from other cores or shards, have also been replicated to a
majority of replicas. At this stage, Mako can assert that the
transaction is COMMITTED. On the other hand, if the version
does not fall below the vector watermark, the transaction is
unsafe to replay since some of its dependencies may be miss-
ing, or some transactions might only be partially replicated.
In such cases, the transaction is queued for future checking.

Replay phase. We employ Thomas’s write rule [90,93] (e.g.,
last writer wins) to replay replicated writes on each shard
follower concurrently without any additional coordination.
Each replicated write corresponds to one transaction. If the
transaction tries to write a data item that has already been
written by another transaction with a newer shard clock, the
write operation is ignored.

Optimization: summary vector clocks. Since we batch
transactions to avoid RPC overhead, we also find it helpful
to do watermark updates and comparisons at the granularity
of batches instead of individual transactions. We do this by
assigning each batch a summary vector clock. Mako com-
putes this summary vector clock by using the highest ci for
all i ∈ [0,n−1] in all vector clocks in the logs of the stream
entry. For example, if we have a batch that is made up of
the 4 transactions in Figure 2, the batch’s summary vector
clock would be (1,3,1). This vector clock is used when the
followers replay operations.

134 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5 Handling failures in speculative 2PC

The speculative transaction execution and pipelined replica-
tion strategy discussed so far assumes no failures. This section
discusses how Mako deals with the cases where speculation
fails due to server failures. We only discuss failures of shard
leaders as failures of followers do not require special handling
other than normal recovery.

5.1 Why is this hard?
A conceptually simple strawman solution is to pause the en-
tire system, sync all replicated transaction logs, track which
speculatively executed transactions are not fully replicated,
rollback these transactions and any transactions that depend
on them, and then resume execution. While straightforward,
this approach is not ideal in practice as a single failed server
can halt the entire system. Furthermore, in multi-shard sys-
tems used today such failures do not impact healthy shards.
Mako preserves this arrangement by ensuring that unaffected
shards can continue processing transactions.

Our original intent was to find and then adapt an existing
technique in order to avoid freezing the entire system in the
event of speculation failures. We were confident that given the
long history of work in speculative execution, such a solution
must exist. To our surprise, we found no prior solution that
could be applied to Mako, and realized that Mako faces unique
challenges. Below is a summary of prior solutions and why
they do not apply to Mako.
• Single-shard speculation. Many speculative execution and

replication works only consider a single shard [33, 81, 85].
In speculation failures, the system freezes to recover. There
is no need for a better solution because there is only one
shard in the system so the system would have to freeze
anyway when the shard fails.

• Re-execution. Two recent designs, Morty [12] and Hack-
wrench [24], use speculative execution on transactions and
re-execute the transaction if the speculation fails. An im-
portant reason why they can do this is that their speculation
failure is not caused by server failures but by conflicting
access in transactions. That is, even though the specula-
tion fails, the transaction requests/logs are still present to
support the re-execution. But in Mako, the servers can fail
before the replication completes, so transactions could be
lost; Mako cannot re-execute transactions in the way that
Morty and Hackwrench do.

• Fine-grained dependency tracking. By recording the fine-
grained dependencies (e.g., T1 reads T2), the system can
accurately abort transactions in a cascading manner. How-
ever, recording such dependencies has a high overhead and
thus is only used in distributed systems [68, 105] where
the baseline throughput is relatively low (i.e., thousands
of transactions per second) so there is room to tolerate
the overhead. In contrast, multicore transactional systems
have much higher throughput (millions of transactions per

second), so introducing fine-grained dependency tracking
can easily kill more than half of the throughput, as is dis-
cussed by prior works [23, 28, 34, 100]. Hence, if we want
Mako to be fast, it cannot take this approach.

• Group-commit. Designs that execute transactions specula-
tively and commit all of them as a group [54,64,101] track
replication progress with a single timestamp. But if a shard
leader fails, the entire system blocks until the failure is de-
tected and fixed (e.g., several seconds). Mako cannot use
this approach because we want healthy shards unaffected
by the failure to continue executing transactions.
Our literature survey leads us to conclude that no existing

solution can meet Mako’s goals. A deeper reason for the
absence of techniques in this domain is that the key building
block in most distributed transaction protocols, 2PC, is not
fault-tolerant. If a shard in 2PC loses its state, the healthy
shards will also get stuck [87]. The usual approach to address
this problem is to replicate every decision in 2PC [20] or
rely on fault-tolerant disaggregated storage [35] so that we
can assume that every shard is always alive. But since Mako
chooses to invert the layering between 2PC and replication,
we must invent a new failure recovery mechanism to support
recovering 2PC with incomplete past decisions.

5.2 Mako’s solution
As Mako does not replicate 2PC’s decision before it finishes,
Mako cannot recover decisions at the level of individual trans-
actions when there are failures. But such fine-grained failure
handling is not necessary anyway. Instead, Mako groups trans-
actions into epochs. When failures happen, Mako advances
the epoch and makes a collective decision about which trans-
actions in the previous epoch must roll back.

Mako has a configuration manager (CM) that manages the
epochs (which is also sometimes called a view manager in
other works). CM itself is replicated so it is considered al-
ways alive. CM maintains heartbeats with every shard. When
a shard leader fails, CM will detect it and trigger a leader
election to elect a new leader. CM also advances the epoch
number and broadcasts the epoch increment to all shards.
The Paxos streams on all shards also use the epoch number
to group log entries, which is a classic approach in consen-
sus systems [16, 72, 73]; we are not introducing algorithmic
changes in reaching consensus.

The newly elected leader will first try to retrieve all repli-
cated log entries in the previous epoch from its peers, re-
commit them if needed, and commit any remaining slots with
no-ops if the entries are not recoverable (any entries after
the no-op will be ignored). We call this closing the previ-
ous epoch, because after this step no more log entries can
be added to the previous epoch. When an epoch is closed on
a shard, its finalized shard watermark can be computed by
choosing the minimum shard clock of all its streams.

Healthy shards also advance their epochs on receiving the
broadcast from the CM. A major difference between a healthy

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 135

shard and a recovered shard is that a healthy shard usually
does not lose any transactions in its log, so its rollback is
expected to be less aggressive. To reflect this, the healthy
shard has an extra step to close the old epoch. The shard
first tries to finish speculative execution and certification of
all transactions in the old epoch, then it replicates a special
ending entry into all its Paxos streams. The ending entry has a
INF shard clock value, indicating that: (1) this is the maximum
clock; (2) there are no more transactions of this epoch on this
shard; and (3) all previous transactions have successfully been
replicated without lost dependencies. When the replication of
INF entries finishes, the leader considers the old epoch closed,
and declares its finalized shard watermark is INF. Note that
INF is also the minimum shard clock of all of its streams, so
the rule for computing the finalized shard watermark is the
same on recovered shards and healthy shards.

If the shard has a hanging transaction in the old epoch
that cannot finish before a timeout (due to network delays or
waiting on the failed shards), it will terminate the hanging
transaction, but not replicate the INF entry in the Paxos stream,
and then computes the watermark normally.

After a shard computes its finalized watermark, it broad-
casts the watermark to all other shards. Eventually, all shards
exchange their finalized watermarks to form the finalized
vector watermark (FVW), which represents a consistent and
maximum global cut across all shards for the old epoch. Given
an epoch, all possible vector watermarks are smaller than the
epoch’s FVW in a pair-wise manner. Computing the FVW is
a deterministic and reentrant process, meaning it can be safely
restarted and re-executed in case of failures, always yielding
the same result. If a shard fails during the steps of closing an
old epoch, the CM will initiate a further configuration change
with a higher epoch. The new leader will always compute the
same FVW for the old epoch as they were computed before.

After the FVW for the old epoch is established, any trans-
actions that are not below the FVW are rolled back on shard
leaders and forever abandoned by the system. One might won-
der why we cannot re-apply the transactions using the logs
from healthy shards. This is because although healthy shards
may have a transaction’s WriteSet, these writes can depend on
lost transactions, so re-applying them would lead to anoma-
lies (§4.4). Note that the number of transactions above the
FVW in the old epoch does not grow once the FVW is estab-
lished, which means the rollbacks are bounded; there are no
unbounded and expensive cascading aborts into new epochs.

During this failure recovery, transaction execution on
healthy shards should not be blocked if transactions do not
involve the failed shard. To reflect this, a healthy shard does
not need to wait for the old epoch to close, and the finalized
vector watermark to be computed, before processing new-
epoch transactions. It does need to wait until all old-epoch
transactions are certified or aborted (but not replicated), so
that no old-epoch transactions read new-epoch transactions.
This switch is very quick. To prevent new-epoch transactions

FVW is (3, INF, INF)
for the old epoch

S
0

S
1 S

2

(1,*,*)

(3,*,*)

(4,*,*)

(8,*,*)

(9,*,*)

(2,*,*)

(5,*,*)

(6,*,*)

(7,*,*)

(0,*,*)

(1,*,*)

(0,*,*)

(7,*,*)

(0,*,*)

(4,*,*)

(0,*,*)

(8,*,*)

(1,*,*)

(2,*,*)

(2,*,*)

(3,*,*)

(0,*,*)

(0,*,*)

(2,*,*)

(4,*,*)

(0,*,*)

(5,*,*)

Worker-0 Worker-0 Worker-1 Worker-0 Worker-1

(*,*,*)

(*,*,*)

(*,*,*)

(*,*,*)

(*,*,*)

(*,*,*)

(*,*,*)

(*,*,*)

(*,*,*)

(*,*,*)

(*,*,*)

Old epoch
is closed

New epoch

 replicated to be replicated

lostrollback

Worker-1

INF

INFINF

INF

Figure 5: Single-shard failure: S0 fails; S1 and S2 are healthy
(irrelevant information is marked with asterisks).

from being affected by the old-epoch rollbacks, we add a rule
that before the FVW is computed and the rollback is done,
new-epoch transactions cannot read from transactions that are
certified but are uncertain if they will be below FVW.

Figure 5 shows an example. There are 3 shards with shard
S0 failing and triggering a rollback. The computed FVW is (3,
INF, INF). All healthy shards (S1 and S2) can eventually repli-
cate their transactions in the old epoch. For any transactions
on the healthy shards that are not below the FVW, such as
(4,*,*), they are rolled back because they could transitively or
directly depend on one of the lost or incomplete transactions.
Additional details. After all shards have advanced to the new
epoch and all old-epoch transactions have finished, the healthy
shards can clean up leftover work by the failed shard, mainly
its pre-owned locks. Further, if a healthy shard launches a
transaction that accesses a shard that is in the process of
recovering from a failure, the healthy shard may be blocked
because Mako has a synchronous threading model. To prevent
this, Mako puts this transaction into a wait queue based on
timeouts until the failed shard recovers.
Correctness. We give a proof of the correctness of Mako’s
design and failure recovery in Appendix A.

6 Practical considerations

In this section we discuss critical extensions to Mako that are
needed for Mako to be useful in practice.

6.1 Scalability with more shards
Recall that Mako creates shards for 2 reasons: to achieve
higher throughput and to support increasingly large datasets
that cannot fit in one machine. As we show in our evalua-
tion (§7), Mako achieves very high throughput with just a
handful of shards and hence there is no need to use many
shards to get high throughput. On the other hand, Mako abso-
lutely needs to scale to support larger datasets.

But adding more shards to Mako brings overheads that can
prove problematic. In particular, there are two components
of Mako that scale with the number of shards: (1) the vector

136 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

watermark introduced in Section 4.4 that tells followers when
it is safe to replay operations; and (2) the version vector
clocks that track the version of objects across transactions.
The vector watermark is not a scalability bottleneck, because
each shard maintains a single vector watermark (the number
of entries is linear in the total number of shards), and each
entry in it is a 32-bit integer. Even if we had 10,000 shards,
each vector watermark would be only 40KB.

On the other hand, there is a version clock for every object
in every transaction. Version vector clocks are a scalability
bottleneck. To address this issue, when the number of shards
gets large, Mako compresses the vector clocks to a small size
similarly to prior works [57, 102, 106, 110]. We provide a
complete pseudocode for the algorithm in the Appendix D,
and evaluate the scalability of vector clocks in Section 7.7.
The high-level idea is as follows.

When installing a new version vector clock, multiple
shards’ clocks can be merged into one entry by choosing
the maximum of these shards’ clocks (the shards’ logical
clock is also updated to the maximum value on installing
the version). This compression is lossy, but it still preserves
correctness because it maintains the key invariant in Mako:
if transaction T2 (transitively) depends on T1, T2 must have a
greater vector clock. The merging strategy is flexible: Mako
can merge any group of clocks into one. For simplicity, we im-
plemented a K : M strategy that groups K shards into M-sized
vector clocks.

Note that compression has its downsides: it degrades per-
formance when a shard fails or slows down. Consider the
extreme case when the vector clock is compressed to a single
timestamp. In this case, when a shard wants to replay a trans-
action, it needs to wait for the watermark of every other shard
to surpass the transaction’s timestamp. If any shard is laggy
or faulty, the whole system is affected. In contrast, in the un-
compressed case, replaying only needs to wait for relevant
shards, not all shards. Mako uses a full-sized vector clock as
its default; when there are many shards it sets the vector clock
to a constant number (e.g., 20) and merges clocks.

6.2 Shard management
Similarly to most works in this space, we use static shard-
ing in our prototype implementation to focus on our primary
research question. However, shard management, such as re-
sharding, is an important topic in practice [20, 41]. Prior
works [1, 6, 48] have shown that thoroughly addressing shard
management requires an entire research project.

We leave the complete design and implementation of a
dynamic sharding solution for Mako to future work. However,
we argue that this problem is not fundamentally more difficult
in Mako than in prior systems. In particular, in Mako, there is
no need for cross-epoch vector clock comparisons and cross-
epoch vector watermark computations, which eliminates con-
cerns about mismatches between vector clocks across epochs.
Leveraging this insight, Mako is able to handle shard man-

agement in a way analogous to failure recovery. Once a FVW
is computed (§5.2), the entire database can be treated as a
read-only snapshot, serving as the initial state with all vector
clocks conceptually reset to zero as vector clocks from the
higher epoch always have a higher priority. We provide more
details in Appendix B.

6.3 Quick failure recovery
Learners. To speed up failure recovery, Mako co-locates
a shard learner in the same datacenter as the shard leader.
A shard learner is essentially the same as a shard follower,
except that it does not vote on consensus. This allows Mako to
recover from the failure of a leader more quickly than having
to make one of the followers the leader (which would cause
shard leaders to no longer be co-located) or provision a new
leader in the existing datacenter which would take some time
for this new machine to catch up from scratch.
Datacenter failures. A special case in deployment is when
all shard leaders are co-located in the same datacenter, and
the entire leader datacenter fails. In such a case, the failure
recovery process can be expedited by skipping all rollbacks
on healthy shard leaders since there are none.
Stragglers. A benefit of using a vector clock is that it is re-
silient to stragglers. A straggler shard in Mako does not block
the system entirely. Note that the all-to-all communication
in Mako for vector clocks is non-blocking. If a shard is very
slow, transactions that do not involve such straggler shard
are not affected. Recall that the watermark is a vector: the
straggler’s entry in the vector would stay the same until the
straggler makes progress, but the other entries in the vector
would be incremented. So transactions that do not touch the
straggler can continue to be replayed at followers and can
return to the client. Only when cross-shard transactions touch
the straggler, would they incur any delay.

7 Evaluation
The evaluation aims to answer the following questions:
• What is the base performance of Mako and does it scale?
• How does Mako compare to the state-of-the-art geo-

replicated transactional systems?
• How fast can Mako recover from failures?

7.1 Experimental setup
We implemented Mako in C++. Mako is based on a few
existing works, including Silo [95] for each server’s database
engine, eRPC [45] for accelerated networks, and the Janus
framework [69] for replication. Mako adds ∼10K new lines
of code. Mako is open sourced at https://github.com/
stonysystems/mako.
Testbed. Experiments were conducted on Azure. Each VM
has 32 Intel vCPU cores, 128GB of RAM, and Mellanox 4
Lx accelerated networking (16 Gbps). The latency within a
datacenter is mostly between 20 and 30 µs, with occasional

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 137

https://github.com/stonysystems/mako
https://github.com/stonysystems/mako

peaks over 100 µs.3 To simulate WAN, we make 3 groups of
servers and inject a 50 ms RTT between groups.4

Baselines. We evaluate nine baselines: (1) five systems
that support scalable sharding and geo-replication, includ-
ing Calvin [94], D2PC [113], TAPIR [109], a Spanner-like
2PC over Paxos, and Janus [69]; and (2) four systems that lack
full sharding or geo-replication features but are optimized for
multi-core settings, including Silo [95], Meerkat [90], Ro-
lis [85], and DrTM+R’s Optimistic Replication (OR) [104].
For Calvin, D2PC, TAPIR, Janus, Silo, Meerkat, and Rolis,
we use their existing implementations with modifications re-
quired to get them to run in our testbed (e.g., we had to port
Meerkat’s networking drivers to work with the network cards
in Azure). We implement our own version of OR because
the original implementation does not support geo-replication.
We add this support by combining OCC with DrTM+R’s op-
timistic replication protocol (we call it OCC+OR). We also
implement a Spanner-like 2PC over Paxos since Spanner is
not open source (we call it 2PC).

Sharding in Mako and baselines. The database is split
across anywhere from 1 to 10 servers. Given that many of the
baselines were not designed to run on many-core machines,
we need to be careful with how we shard the data as otherwise
we could be very unfair to them. We do the following.
• Mako, OCC+OR, 2PC: 1 server is 1 multi-core shard

with 24 worker threads.
• Janus, D2PC, TAPIR: 1 server is 24 shards, each with 1

worker thread.
• Calvin: 1 server runs 3 shards (called “partitions” in

Calvin), and each shard has 8 worker threads.
The goal of the above arrangement is to ensure that, to the

best of our ability, we are giving the same amount of hardware
resources to all of the different systems. There is however, an-
other issue that arises. When we run many of these baselines
with many servers, they end up having a lot of shards. For ex-
ample, if we run Janus, D2PC, or TAPIR with 10 servers, that
is equivalent to running them with 240 shards. The research
prototypes of these systems were never tested with such high
number of shards, so at this scale all of them experience is-
sues (e.g., can’t establish socket connections, abort rates are
too high, most RPCs time out) when performing cross-shard
transactions (we have confirmed this with several of the au-
thors of these systems). We therefore make the decision to be
generous to these baselines and disable all cross-shard trans-
actions for Janus, D2PC, TAPIR, and Calvin. In other words,
they only perform single-shard transactions, whereas Mako,

3Note that this is higher than the usual single-digit microseconds latency
one would observe in a local cluster with the same high-end networks. After
consulting with Azure administrators as well as authors of other works using
Azure [27], we learned that the higher latency on Azure is the norm and we
assume it is related to the virtualization infrastructure.

4We inject latency instead of deploying in multiple datacenters since we
were limited by Azure quotas. We tested small-sized deployment in multiple
datacenters and the results are consistent with the injected-latency test.

OCC+OR, and 2PC will perform cross-shard transactions.
To ensure fault-tolerance, we also replicate each server so

we have one leader, one learner (§6.3), and two followers (this
means in total we have up to 40 servers). Unless otherwise
noted, all shard leaders are deployed in the same datacenter,
and all clients are co-located with the shard leaders.

Benchmarks. We evaluate two benchmarks:
• TPC-C. This benchmark simulates an e-commerce site.

TPC-C consists of a mix of five concurrent transactions
that represent different types of activities, including new
orders (NEW), payment processing (PAY), order status
checking (ORDER), delivery scheduling (DLY), and stock
level checking (STOCK). TPC-C scales by sharding a
database into multiple warehouses spread across multiple
cores and shards. Transactions in TPC-C are configurable
to span multiple warehouses to evaluate the performance
and scalability of distributed database systems. This type
of transaction is more complex and resource-intensive than
transactions that access data within a single warehouse,
as it requires coordination and communication between
multiple cores and servers. We run the standard mix on the
default configuration unless otherwise mentioned.

• Microbenchmark of small-sized transactions. Because
Mako introduces overheads at the transaction level, its per-
formance is penalized more with small-sized transactions.
We demonstrate cases like this using a microbenchmark
with two transaction types: Read-Only (READ) and Read-
Modify-Write (RMW). Each READ transaction has 4 read
operations and each RMW transaction has 4 read-modify-
write operations. The total data space for the microbench-
mark is 1 million keys for each shard. We conduct 50% of
RMW transactions and 50% of READ transactions. Each
operation randomly selects a key in a given shard. There
is a 95% chance of selecting from the shard where the
coordinator is running, and a 5% chance of the coordinator
performing a cross-shard key access.

7.2 Throughput and scalability
This part evaluates the performance and scalability of Mako.

TPC-C Benchmark. Of the 10 systems that we are evalu-
ating, only 7 systems readily support TPC-C. These include:
Mako, 2PC, Janus, D2PC, Calvin, Silo, and Rolis. TAPIR and
Meerkat do not support TPC-C in their existing code bases,
and we did not implement TPC-C for OCC+OR.

We run TPC-C on the 7 systems that support it with an
increasing number of shards. The number of warehouses is
set to be equal to the number of worker threads in the system.

Mako is able to scale well in Figure 6a. Mako’s through-
put at 10 shards (10 servers) is 3.66M transactions per sec-
ond (TPS), which outperforms Calvin by 8.6×. As a side
note, Mako also has good single-shard performance reaching
0.96M TPS, which outperforms Calvin by 22.5×. The major
reason for the slowness in Calvin is that it uses a central se-

138 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 2 4 6 8 10
Number of Servers

0

2

4

6

T
P

U
T

 (
M

 t
x
n

s
/s

e
c
) Mako

Mako w/o rep.

2PC w/o rep.

Silo

Janus
Calvin

Rolis

2PC

D2PC

(a) TPC-C Workload

1 2 4 6 8 10
Number of Servers

0

5

10

15

20

T
P

U
T

 (
M

 t
x
n

s
/s

e
c
) Mako w/o rep.

2PC w/o rep.

Silo

Rolis 2PC

Mako

TAPIR

OCC+OR

Meerkat

D2PC

Janus

D2PC

Janus

(b) Microbenchmark workload
Figure 6: Throughput and scalability of Mako and the baselines. In Mako, the number of shards is equal to the number
of servers (x-axis). In other systems, the number of shards is larger than the number of servers (see Section 7.1).

quencer to pre-determine the order of a batch of transactions,
which are then sent to all replicas to execute deterministically
through Zookeeper.

There is a noticeable per-shard throughput drop when in-
creasing the number of shards in Mako from 1 to 2. The
reason for this decline is that 1% of the items accessed in the
NewOrder transaction (10 items accessed on average) trigger
a cross-warehouse access, which results in 5.11% cross-shard
transaction coordination. This overhead is considerably more
expensive compared to the local in-memory operations.

The performance of Mako scales almost linearly after 2
servers. As the number of servers increases, Mako’s through-
put per shard slightly decreases with increasing shards from
2 to 10 shards, because the ratio of cross-shard transactions
increases. For example, NewOrder goes from ∼5% to ∼9%
(the theoretical bound is 10%). While 2PC scales well up to
10 servers, its throughput is lower than Mako because geo-
replication is on the critical path of concurrency control. This
same effect of having geo-replication in the critical path af-
fects D2PC and Janus, which can only reach 38.5K TPS and
10.4K TPS with 2 servers, respectively.
Ablation testing. To understand the contribution of different
components in Mako, we disable various parts of Mako and
some of the baselines.

First, we disable all replication for Mako and 2PC. We
observe that both Mako and 2PC without replication perform
much better than their respective variants with replication
(as is expected). For example, the overhead of replication in
Mako is around 23%. 2PC, without the geo-latency to slow
down its transaction processing, gets a massive performance
boost and is even better than Mako because it has fewer RTTs
for cross-shard transactions.

Second, we measure Silo, which is the system on top of
which we built Mako, to investigate the cost of adding shard-
ing and replication to a single-machine database. Mako pre-
serves 68.4% of the throughput of Silo on a single machine.

Third, we evaluate Rolis, which extends Silo to support
geo-replication efficiently. Rolis achieves higher throughput

than Mako with 1 shard since it does not have multi-version
overhead. However, Rolis can only support one shard so if the
database gets too big or if the system requires more through-
put, there is nothing that Rolis can do besides using bigger
machines. Adding support for sharding is precisely Mako’s
contribution over Rolis.

Microbenchmark: We further study the performance and
scalability of Mako on the microbenchmark with a fixed 5%
cross-shard key access, as shown in Figure 6b. In this experi-
ment, we also include the results for OCC+OR, Meerkat, and
TAPIR. In this simple but high throughput scenario, Mako
can still scale well beyond 2 shards. The throughput of Mako
at 10 shards is up to 16.7M TPS. Both Mako and OCC+OR
can scale well with more shards, but Mako is able to achieve
32.2× higher throughput than OCC+OR at 10 shards (10
servers). OCC+OR can only achieve up to 0.52M TPS be-
cause transactions in OCC+OR always optimistically read
and abort if the replicas are not ready during the commit
phase, which is often the case under geo-replication. As in
the TPC-C benchmark, Rolis achieves 39% higher throughput
than Mako when using a single shard.

Meerkat does not support sharding, so we test its single-
shard performance with 24 worker threads. All servers are
connected via DPDK. Meerkat achieves 1.17M TPS, a lot
lower than Mako at 1 shard. In fairness, Meerkat supports
interactive transactions which are more costly to handle than
the “one shot” (or non-interactive) transaction model used
by Mako and the other baselines. So this comparison is not
apples-to-apples and should be treated qualitatively (Mako is
very competitive) rather than quantitatively.

We test Janus, D2PC, and TAPIR up to 2, 2 and 6 servers,
respectively. All systems scale well, with Janus achieving
640K TPS, D2PC attaining 137K TPS, and TAPIR reaching
168K TPS. We could not test beyond these configurations be-
cause the prototype implementations of these systems could
not support more shards. Nevertheless, assuming they con-
tinue to scale in the same fashion, Mako still achieves orders

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 139

100 200 400 600 1000 1600 2400
Batch size

0

100

200

300

400

500

600
L

a
te

n
c
y
 (

m
s
)

P50

P90

P95

0

1

2

3

4

5

T
P

U
T

 (
M

)

TPUT (M)

Figure 7: Mako’s latency and throughput on TPC-C with
varying batch size.

of magnitude better performance by decoupling transaction
coordination and replication.

7.3 Latency
Mako’s latency has three dominant sources: the RTT between
datacenters, the batching window to gather transactions and
put them into a stream entry, and the advance time of the
vector watermark to go beyond the vector clock. We measure
Mako’s latency with 10 shards on TPC-C. The results are
shown in Figure 7. Median latency with batch size of 600 is
121 ms, of which ∼50 ms are for RTT between datacenters, 13
ms for batching, and the rest to advance the vector watermark.
In contrast, 2PC (not shown in the figure) has a much higher
latency (∼ 10×) at high throughput because of aborts.

As shown in the results, batch size has an obvious impact
on latency but the impact on throughput is minimal once the
batch size is large enough (a few hundred). Compared to a
batch size of 100, the throughput of Mako with a batch size
of 400 increases by 15.8%. This throughput remain roughly
constant up to batches of 1600. Based on this, we set Mako’s
batch size to 400 by default, and used this in all experiments.

We also evaluate the latency of Mako, Janus, and Calvin
under a light workload (microbenchmark) using a single repli-
cated shard. This helps us understand the communication
overhead of the various systems. Figure 8 gives the results.

The median latency of Mako is 60 ms, comprising approxi-
mately 50 ms for one WAN RTT, 3.5 ms for batching, and 6.5
ms for waiting on the watermark advancement. In compari-
son, Janus achieves a best-case latency of around 50 ms as
expected (one WAN RTT), while Calvin exhibits a latency of
166 ms using ZooKeeper-based replication, which matches
the number reported in the Calvin paper. All tail latencies are
not significantly affected under the light workload.

7.4 Impact of cross-shard transactions
In this experiment, we evaluate Mako on the microbench-
mark using 10 shards while varying the ratio of cross-shard
transactions to measure the impact of distributed transactions.
As depicted in Figure 9, in the absence of cross-shard trans-
actions, Mako achieves a peak throughput of 60.3M TPS,
which then declines. When all transactions are cross-shard,

Percentile Mako Janus Calvin

10% 57 ms 50.3 ms 146 ms
50% 60 ms 50.5 ms 166 ms
90% 64 ms 50.7 ms 202 ms
95% 65 ms 50.8 ms 206 ms
99% 66 ms 51.3 ms 212 ms

Figure 8: Latency measurements for Mako, Janus, and
Calvin on the microbenchmark under a light workload.

0 10 40 60 90 100

Ratio of cross-shard Txn (%)

0.1

1

10

100

T
P

U
T

 (
M

 t
x
n

s
/s

e
c
) MakoMako

Figure 9: Varying ratio
of cross-shard transactions
on the microbechmark.

0 9 36 59 89 100

Ratio of cross-shard Txn (%)

0.01

0.1

1

10

T
P

U
T

 (
M

 t
x
n

s
/s

e
c
) Mako (same DC)

Mako (diff DC)

2PC (same DC)

2PC (diff DC)

Figure 10: Effect of leader
placement on Mako’s
throughput.

the throughput drops by 98.2% to 1.1M TPS primarily due to
the significant time consumed by RPCs.

7.5 Leader placement
We distribute leaders evenly into two datacenters to evalu-
ate how the conflict windows for cross-shard transactions is
prolonged and how this affects performance.

We use the NewOrder transaction in TPC-C as the bench-
mark. The ratio of cross-shard transactions is controlled by
varying the cross-warehouse access. Since the NewOrder
transaction accesses an average of 10 items, a 1% cross-
warehouse access results in approximately 9.04% distributed
transactions, while a 50% cross-warehouse access leads to
more than 99% distributed transactions.

In Figure 10, we increase the ratio of cross-shard trans-
actions while fixing the number of clients (24K clients) for
Mako and 2PC to test intra-/inter-datacenter transactions. As
expected, if there are no cross-shard transactions, the perfor-
mance of Mako and 2PC are not impacted, reaching 4.0M and
52K TPS respectively. As the cross-shard transaction ratio
increases, the throughput of both systems drops significantly.
However, even with leaders in different datacenters Mako
achieves much higher throughput than 2PC.

7.6 Effect of concurrency on throughput
In the introduction, we remarked that a common way in sys-
tems to increase throughput is to process more client requests
at the same time. We also stated that this is not actually the
case in transactional systems. To gather support for this claim,
we follow the experimental setup described in Section 7.5 and
evaluate the performance of 2PC on NewOrder transactions
when the leaders are placed in different datacenters. We in-

140 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 2 12 24 48 72

Clients (K)

0

10

20

30

40

50

60

T
P

U
T

 (
K

 t
x
n

s
/s

e
c
)

2PC (diff DC)
0

20

40

60

80

100

A
b

o
r
ts

 (
%

)

Aborts

Figure 11: 2PC throughput
with varying concurrency.

64 128 192 256 320 384 448 512
Number of Shards

0

2.5

5

7.5

10

12.5

15

T
P

U
T

 (
M

 t
x
n

s
/s

e
c
)

Single Timestamp

Fixed-64 VC

Full-sized VC

Figure 12: Scalability of vec-
tor clock

crease the concurrency (number of clients) while maintaining
a fixed ratio of cross-shard transactions (∼9%) in Mako.

As shown in Figure 11, the throughput of 2PC plateaus,
starting with 12K clients. This result shows that simply in-
creasing concurrency for a transactional system does not nec-
essarily lead to higher throughput; instead, it may actually
result in lower throughput due to an increased number of
aborts. Beyond 12K clients, the throughput remains flat, and
the transaction abort rate escalates to an astonishingly high
level of 98%. As the contention footprint increases, concurrent
transactions are more likely to be aborted due to prolonged
conflict windows (at least 1 WAN RTT).

7.7 Scalability of vector clocks

As we discuss in Section 6.1, vector clocks can become a
scalability bottleneck when Mako has many shards. To ex-
plore this effect and also the improvement of our proposed
optimizations, we perform an experiment where we run Mako
with hundreds of shards. One caveat is that we do not have
thousands of machines available, so our ability to experiment
with hundreds of shards (plus their replicas) is limited. We
do the following: we limit each shard to use only one CPU
and run the microbenchmark. The expectation here is that
the throughput numbers will be lower than a standard deploy-
ment of Mako, but it should help us appreciate the overhead
from the vector clock. Each transaction consists of four RMW
operations and 5% of accesses span a different shard.

We test 3 strategies: the full-sized vector clock (VC), a VC
that is compressed to a single timestamp, and a VC that is
compressed to a VC with exactly 64 entries. The results are
shown in Figure 12.

The full-sized VC approach can scale to 320 shards before
its performance starts to degrade. This shows the full-sized
VC is enough to support many database deployments since
Mako is a very high-throughput database, even with a few
shards. Of course, if the datasets are massive and the database
requires many shards to fit all that data in memory this does
mean that the full VC could become a scalability bottleneck.
Both the timestamp approach and Fixed-64 VC achieve near
linear scalability because the VC-related overhead is indepen-
dent of the number of shards.

Phase1 Phase2

Failure detected

(a) Healthy shard S1

0 10 20 30 40

Time (Sec)

0

100

200

300

400

500

T
P

U
T

 (
K

 t
x
n

s
/s

e
c
)

Mako

Mako-epoch

(b) Failed shard S0

Figure 13: Single-shard failure: TPC-C.

7.8 Single-shard failure recovery
In the case of a single-shard failure, Mako minimizes the
impact on uninvolved shards §5.1), which is a key distinction
between Mako and systems that perform group or epoch-
based commits such as Primo [54] and COCO [64]. To show
this difference, we implement a variant of Mako that we call
Mako-epoch, which implements the failure recovery strategy
of epoch-based commit protocols. Our experiment simulates
a shard failure by shutting down shard leader S0, triggering a
learner takeover. Figure 13 reports the throughput of a healthy
and failing shard during the failover.

As outlined in Section 5.1, Mako in Figure 13a exhibits
2 phases during failure recovery. Phase 1: the healthy shard
remains unaware of S0’s failure and continues sending cross-
shard transactions to it. These transactions trigger eRPC time-
outs (usually very short, e.g., 5ms) and are queued. After a
heartbeat timeout, the healthy shard is aware of S0’s failure.
Phase 2: FVW has been computed, and the healthy shard
replays transactions from the queue, causing the throughput
to gradually climb back to the pre-failure level. Mako in Fig-
ure 13b shows the throughput changes in the failed shard.
The throughput first drops to 0 for 10 seconds because of the
heartbeat timeout, and recovers to a pre-failure level once the
new leader takes over.

In Mako-epoch, the behavior for a failed shard is similar
to Mako’s. However, the behavior for a healthy shard is very
different. As shown in Figure 13a, no transactions execute
successfully in Mako-epoch during Phase 1 because healthy
shards remain unaware of the failed shard(s), and all trans-
actions that execute in the old epoch eventually need to roll
back upon failure detection. This is because, in epoch-based
protocols like Mako-epoch, an epoch is the commit unit.

7.9 Factor analysis
In Section 7.2 we had an initial ablation study. Here we ex-
pand on it to understand exactly how each component con-
tributes to Mako. This test is done with 10 shards.

Silo
+Multi
Version

+Distr.
Trans.

+Rep.
+Replay
(Mako)

TPUT (M) 1.66 1.48 0.47 0.36 0.36

The starting point of Mako is Silo, which achieves 1.66M

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 141

TPS on a single machine without any sharding or replication.
The versioned values technique for rolling back results intro-
duces a 11.1% overhead because each data item must now
store a list of all its versions, which takes up additional mem-
ory operations. In addition, cross-shard coordination for dis-
tributed transactions accounts for a significant loss of 68.1%.
Mako then needs to use CPU resources to serialize transac-
tions into batched logs and use Paxos streams for replica-
tion, which causes a further 22.5% throughput loss. Replay in
contrast has no impact on throughput because Mako replays
transactions on shard followers asynchronously.

8 Further discussion

Read-only transactions. Our current implementation does
not let read-only transactions execute directly at the
followers—which is a common optimization. But Mako is
compatible with this optimization by employing the high-
level approach proposed in Silo [95]. The idea is to keep a
dedicated checkpointing thread that periodically snapshots
the databas so that read-only transactions can read from this
snapshot. To do this in Mako, we would maintain two special
versions of each key: one reflecting the latest value and the
other storing the most recent value up to the last all-agreed
vector watermark for read-only transactions.
High contention workloads. High contention workloads
lead to high abort rates in all systems, including Mako. That
said, Mako’s pipelined replication and smaller conflict win-
dow (due to decoupled replication) lead to fewer aborts com-
pared to other systems where replication is in the critical path.
While high contention workloads would increase the transac-
tion abort rate, they do not increase stress on Mako, as fewer
transaction logs are generated.

9 Related work

This section reviews works in the literature on transactional,
geo-replicated, multi-core systems from the various angles.
Distributed systems within the datacenter. Many works
improve the performance of distributed transactions within a
datacenter [4,9,10,17,25,46,67,74,84,90,103,107,110,112].
These systems use advanced hardware, such as HTM, RDMA,
and DPDK, to deliver good performance, strong consistency,
and fault tolerance. A key feature shared by these systems
is that replication happens side-by-side with transaction ex-
ecution and/or commit, making transaction backup part of
the critical path. In contrast, Mako is specifically optimized
for geo-replicated databases and can therefore withstand full
datacenter failures (whereas these works cannot), while still
achieving high performance through speculative execution.
Geo-replicated distributed systems . Recent state-of-the-art
distributed systems [7, 31, 40, 43, 44, 55, 56, 62, 70, 83, 97, 111,
113–115] pursue fast geo-replication. For example, Ocean

Vista [30], TAPIR [109], and Janus [69] only need one WAN
RTT if no conflicts are present by combining concurrency con-
trol and replication. However, they integrate replication into
transaction execution, significantly impacting performance
due to high WAN latency.
Speculative replication. Speculative replication [47, 54, 64,
81, 85] is a common optimization technique used in geo-
replicated transactional systems to enhance throughput and re-
duce latency. Besides the discussion in Section 5.1, many sys-
tems [3,32,58,61,77,88,108] resort to weaker consistency se-
mantics (e.g., causal consistency) that permit an asynchronous
replication strategy in geo-replicated systems. Epoch-based
commit systems, such as COCO [64] and Primo [54] specu-
latively execute transactions within each epoch while asyn-
chronously replicating writes only at epoch boundaries to
enhance performance. Compared to these systems, Mako’s
major advantage is that it does not have to stop healthy shards
during a failure recovery as we show in Section 7.8.
Deterministic algorithms. Deterministic databases [29, 37,
39, 80, 94] can execute transactions deterministically across
multiple replicas with either asynchronous or synchronous
replication. In systems like Calvin [94] and C5 [37], trans-
actions undergo a sequencing phase before execution. This
sequencing layer establishes the ordering of submitted trans-
actions and replicates them asynchronously in batches. In
contrast, Mako adopts a different approach that eliminates the
need for a predetermined order during execution.
Vector clock and watermark. Vector clocks and watermarks
are widely used techniques to track dependency and maintain
consistency in distributed systems [2, 22, 52, 61, 63, 65, 71].
Despite using the same techniques, Mako generally has a
different goal and therefore an overall different system de-
sign. For example, CURE [2] is a geo-replicated store that
uses vector clocks in transaction execution and watermarks
to control stable snapshots. It targets transactional causal con-
sistency, while Mako implements serializability, so the goals
and techniques are different.

10 Conclusion

This paper presents Mako, a highly-available, fast, and scal-
able transactional database system, specifically optimized for
geo-replication. Mako decouples transaction execution and
replication, makes execution speculative, and leverages multi-
core machines. Our experimental evaluation shows that Mako
outperforms state-of-the-art geo-replicated transactional sys-
tems by an order of magnitude in throughput.

Acknowledgments

We thank the anonymous reviewers for suggestions that im-
proved our work. This project was funded in part by NSF
awards CNS-2107147, CNS-2321726, CNS-2326576, CNS-
2045861, CNS-2321725, CNS-2238768, and CNS-2130590.

142 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson,
Colin Meek, Vishesh Khemani, Stefan Fulger, Pan Gu,
Lakshminath Bhuvanagiri, Jason Hunter, Roberto Peon,
Larry Kai, Alexander Shraer, Arif Merchant, and Kfir
Lev-Ari. Slicer: Auto-Sharding for Datacenter Appli-
cations. In Proceedings of USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
2016.

[2] Deepthi Devaki Akkoorath, Alejandro Z. Tomsic,
Manuel Bravo, Zhongmiao Li, Tyler Crain, Annette
Bieniusa, Nuno Preguiça, and Marc Shapiro. Cure:
Strong semantics meets high availability and low la-
tency. In Proceedings of IEEE International Con-
ference on Distributed Computing Systems (ICDCS),
2016.

[3] Sergio Almeida, Joao Leitao, and Luis Rodrigues.
ChainReaction: a Causal+ Consistent Datastore based
on Chain Replication. In Proceedings of ACM Eu-
ropean Conference on Computer Systems (EuroSys),
2013.

[4] Ahmed Alquraan, Sreeharsha Udayashankar, Viren-
dra Marathe, Bernard Wong, and Samer Al-Kiswany.
LoLKV: The Logless, Linearizable, RDMA-based Key-
Value Storage System. In Proceedings of USENIX
Conference on Networked Systems Design and Imple-
mentation (NSDI), 2024.

[5] Sebastian Angel, Aditya Basu, Weidong Cui, Trent
Jaeger, Stella Lau, Srinath Setty, and Sudheesh Sin-
ganamalla. Nimble: Rollback Protection for Confi-
dential Cloud Services. In Proceedings of USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2023.

[6] Muthukaruppan Annamalai, Kaushik Ravichandran,
Harish Srinivas, Igor Zinkovsky, Luning Pan, Tony Sa-
vor, David Nagle, and Michael Stumm. Sharding the
shards: managing datastore locality at scale with Akkio.
In Proceedings of USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2018.

[7] Philip A Bernstein, Colin W Reid, and Sudipto Das.
Hyder-A Transactional Record Manager for Shared
Flash. In Proceedings of Biennial Conference on Inno-
vative Data Systems Research (CIDR), 2011.

[8] Srivatsa S Bhat, Rasha Eqbal, Austin T Clements,
M Frans Kaashoek, and Nickolai Zeldovich. Scaling
a file system to many cores using an operation log. In
Proceedings of ACM Symposium on Operating Systems
Principles (SOSP), 2017.

[9] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim
Kraska, and Erfan Zamanian. The end of slow net-
works: it’s time for a redesign. The Proceedings of the
VLDB Endowment (PVLDB), 2016.

[10] Chiranjeeb Buragohain, Knut Magne Risvik, Paul
Brett, Miguel Castro, Wonhee Cho, Joshua Cowhig,
Nikolas Gloy, Karthik Kalyanaraman, Richendra
Khanna, John Pao, Matthew Renzelmann, Alex Shamis,
Timothy Tan, and Shuheng Zheng. A1: A distributed
in-memory graph database. In Proceedings of ACM In-
ternational Conference on Management of Data (SIG-
MOD), 2020.

[11] Matthew Burke, Sowmya Dharanipragada, Shannon
Joyner, Adriana Szekeres, Jacob Nelson, Irene Zhang,
and Dan R K Ports. PRISM: Rethinking the RDMA In-
terface for Distributed Systems. In Proceedings of
ACM Symposium on Operating Systems Principles
(SOSP), 2021.

[12] Matthew Burke, Florian Suri-Payer, Jeffrey Helt,
Lorenzo Alvisi, and Natacha Crooks. Morty: Scal-
ing Concurrency Control with Re-Execution. In Pro-
ceedings of ACM European Conference on Computer
Systems (EuroSys), 2023.

[13] Michael Burrows. The Chubby Lock Service for
Loosely-Coupled Distributed Systems. In Proceedings
of USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2006.

[14] Francesco Calabrese, Mi Diao, Giusy Di Lorenzo,
Joseph Ferreira Jr, and Carlo Ratti. Understanding in-
dividual mobility patterns from urban sensing data: A
mobile phone trace example. Transportation research
part C: emerging technologies, 2013.

[15] Wei Cao, Xiaojie Feng, Boyuan Liang, Tianyu Zhang,
Yusong Gao, Yunyang Zhang, and Feifei Li. Logstore:
A cloud-native and multi-tenant log database. In Pro-
ceedings of ACM International Conference on Man-
agement of Data (SIGMOD), 2021.

[16] Tushar Deepak Chandra, Robert Griesemer, and Joshua
Redstone. Paxos made live: an engineering perspective.
In Proceedings of ACM Symposium on Principles of
Distributed Computing (PODC), 2007.

[17] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and
Haibo Chen. Fast and general distributed transactions
using RDMA and HTM. In Proceedings of ACM Eu-
ropean Conference on Computer Systems (EuroSys),
2016.

[18] Audrey Cheng, Xiao Shi, Aaron Kabcenell, Shilpa
Lawande, Hamza Qadeer, Jason Chan, Harrison Tin,

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 143

Ryan Zhao, Peter Bailis, Mahesh Balakrishnan, Nathan
Bronson, Natacha Crooks, and Ion Stoica. TaoBench:
An end-to-end benchmark for social network work-
loads. The Proceedings of the VLDB Endowment
(PVLDB), 2022.

[19] Austin T Clements, M Frans Kaashoek, Eddie Kohler,
Robert T Morris, and Nickolai Zeldovich. The scalable
commutativity rule: designing scalable software for
multicore processors. Communications of the ACM,
2017.

[20] James C. Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, J. J. Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene
Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,
David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s globally distributed database. In
Proceedings of USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2012.

[21] Heming Cui, Rui Gu, Cheng Liu, Tianyu Chen, and
Junfeng Yang. Paxos made transparent. In Proceedings
of ACM Symposium on Operating Systems Principles
(SOSP), 2015.

[22] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly avail-
able key-value store. In Proceedings of ACM Sympo-
sium on Operating Systems Principles (SOSP), 2007.

[23] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-
Ake Larson, Pravin Mittal, Ryan Stonecipher, Nitin
Verma, and Mike Zwilling. Hekaton: SQL server’s
memory-optimized OLTP engine. In Proceedings
of ACM International Conference on Management of
Data (SIGMOD), 2013.

[24] Zhiyuan Dong, Zhaoguo Wang, Xiaodong Zhang, Xian
Xu, Changgeng Zhao, Haibo Chen, Aurojit Panda, and
Jinyang Li. Fine-Grained Re-Execution for Efficient
Batched Commit of Distributed Transactions. The Pro-
ceedings of the VLDB Endowment (PVLDB), 2023.

[25] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In Proceedings of USENIX Conference on Net-
worked Systems Design and Implementation (NSDI),
2014.

[26] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B Nightingale, Matthew Renzelmann, Alex

Shamis, Anirudh Badam, and Miguel Castro. No com-
promises: distributed transactions with consistency,
availability, and performance. In Proceedings of ACM
Symposium on Operating Systems Principles (SOSP),
2015.

[27] Tamer Eldeeb, Xincheng Xie, Philip A Bernstein, Asaf
Cidon, and Junfeng Yang. Chardonnay: Fast and Gen-
eral Datacenter Transactions for On-Disk Databases.
In Proceedings of USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2023.

[28] Jose M. Faleiro, Daniel J. Abadi, and Joseph M. Heller-
stein. High Performance Transactions via Early Write
Visibility. The Proceedings of the VLDB Endowment
(PVLDB), 2017.

[29] Jose M Faleiro, Daniel J Abadi, and Joseph M Heller-
stein. High performance transactions via early write
visibility. The Proceedings of the VLDB Endowment
(PVLDB), 2017.

[30] Hua Fan and Wojciech Golab. Ocean vista: gossip-
based visibility control for speedy geo-distributed trans-
actions. The Proceedings of the VLDB Endowment
(PVLDB), 2019.

[31] Anil K Goel, Jeffrey Pound, Nathan Auch, Pe-
ter Bumbulis, Scott MacLean, Franz Färber, Francis
Gropengiesser, Christian Mathis, Thomas Bodner, and
Wolfgang Lehner. Towards scalable real-time analyt-
ics: An architecture for scale-out of OLxP workloads.
The Proceedings of the VLDB Endowment (PVLDB),
2015.

[32] Chathuri Gunawardhana, Manuel Bravo, and Luís ET
Rodrigues. Unobtrusive Deferred Update Stabiliza-
tion for Efficient Geo-Replication. In Proceedings of
USENIX Conference on Annual Technical Conference
(ATC), 2017.

[33] Zhenyu Guo, Chuntao Hong, Mao Yang, Dong Zhou,
Lidong Zhou, and Li Zhuang. Rex: replication at the
speed of multi-core. In Proceedings of ACM European
Conference on Computer Systems (EuroSys), 2014.

[34] Zhihan Guo, Kan Wu, Cong Yan, and Xiangyao Yu.
Releasing Locks As Early As You Can: Reducing Con-
tention of Hotspots by Violating Two-Phase Locking.
In Proceedings of ACM International Conference on
Management of Data (SIGMOD), 2021.

[35] Zhihan Guo, Xinyu Zeng, Kan Wu, Wuh-Chwen
Hwang, Ziwei Ren, Xiangyao Yu, Mahesh Balakrish-
nan, and Philip A Bernstein. Cornus: atomic commit
for a cloud DBMS with storage disaggregation. The
Proceedings of the VLDB Endowment (PVLDB), 2022.

144 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[36] Theo Haerder and Kurt Rothermel. Concepts for trans-
action recovery in nested transactions. In Proceedings
of ACM International Conference on Management of
Data (SIGMOD), 1987.

[37] Jeffrey Helt, Abhinav Sharma, Daniel J. Abadi, Wyatt
Lloyd, and Jose M. Faleiro. C5: Cloned Concurrency
Control That Always Keeps Up. The Proceedings of
the VLDB Endowment (PVLDB), 2022.

[38] Maurice P Herlihy and Jeannette M Wing. Lineariz-
ability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and
Systems (TOPLAS), 1990.

[39] Joshua Hildred, Michael Abebe, and Khuzaima Daud-
jee. Caerus: Low-Latency Distributed Transactions
for Geo-Replicated Systems. The Proceedings of the
VLDB Endowment (PVLDB), 2023.

[40] Chuntao Hong, Dong Zhou, Mao Yang, Carbo Kuo,
Lintao Zhang, and Lidong Zhou. KuaFu: Closing the
parallelism gap in database replication. In Proceedings
of IEEE International Conference on Data Engineer-
ing (ICDE), 2013.

[41] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu
Ma, Fei Xu, Li Shen, Liu Tang, Yuxing Zhou, Meng-
long Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun
Li, Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng
Yu, Lei Zhao, Nicholas Cameron, Liquan Pei, and Xin
Tang. TiDB: a Raft-based HTAP database. The Pro-
ceedings of the VLDB Endowment (PVLDB), 2020.

[42] Yihe Huang, William Qian, Eddie Kohler, Barbara
Liskov, and Liuba Shrira. Opportunities for Optimism
in Contended Main-Memory Multicore Transactions.
The Proceedings of the VLDB Endowment (PVLDB),
2020.

[43] Theo Jepsen, Leandro Pacheco de Sousa, Huynh Tu
Dang, Fernando Pedone, and Robert Soulé. Optimistic
aborts for geo-distributed transactions. arXiv preprint
arXiv:1610.07459, 2016.

[44] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and
Ion Stoica. Netchain: Scale-free sub-rtt coordination.
In Proceedings of USENIX Conference on Networked
Systems Design and Implementation (NSDI), 2018.

[45] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In Proceed-
ings of USENIX Conference on Networked Systems
Design and Implementation (NSDI), 2019.

[46] Anuj Kalia, Michael Kaminsky, and David G Andersen.
FaSST: Fast, Scalable and Simple Distributed Trans-
actions with Two-Sided (RDMA) Datagram RPCs. In
Proceedings of USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2016.

[47] Manos Kapritsos, Yang Wang, Vivien Quema, Allen
Clement, Lorenzo Alvisi, and Mike Dahlin. All about
Eve: Execute-verify replication for multi-core servers.
In Proceedings of USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2012.

[48] Antonios Katsarakis, Yijun Ma, Zhaowei Tan, Andrew
Bainbridge, Matthew Balkwill, Aleksandar Dragojevic,
Boris Grot, Bozidar Radunovic, and Yongguang Zhang.
Zeus: locality-aware distributed transactions. In Pro-
ceedings of ACM European Conference on Computer
Systems (EuroSys), 2021.

[49] Idit Keidar and Danny Dolev. Increasing the resilience
of atomic commit, at no additional cost. In Proceedings
of ACM International Conference on Management of
Data (SIGMOD), 1995.

[50] Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and
Ippokratis Pandis. ERMIA: fast memory-optimized
database system for heterogeneous workloads. In Pro-
ceedings of ACM International Conference on Man-
agement of Data (SIGMOD), 2016.

[51] Hideaki Kimura. FOEDUS: OLTP engine for a thou-
sand cores and NVRAM. In Proceedings of ACM In-
ternational Conference on Management of Data (SIG-
MOD), 2015.

[52] Masoomeh Javidi Kishi, Sebastiano Peluso, Henry F
Korth, and Roberto Palmieri. SSS: scalable key-
value store with external consistent and abort-free read-
only transactions. In Proceedings of IEEE Interna-
tional Conference on Distributed Computing Systems
(ICDCS), 2019.

[53] W Kohler, A Shah, and F Raab. Overview of TPC
Benchmark C: The Order-Entry Benchmark. Transac-
tion Processing Performance Council, Technical Re-
port, 1991.

[54] Ziliang Lai, Hua Fan, Wenchao Zhou, Zhanfeng Ma,
Xiang Peng, Feifei Li, and Eric Lo. Knock Out 2PC
with Practicality Intact: a High-performance and Gen-
eral Distributed Transaction Protocol. In Proceedings
of IEEE International Conference on Data Engineer-
ing (ICDE), 2023.

[55] Jialin Li, Ellis Michael, and Dan RK Ports. Eris:
Coordination-free consistent transactions using in-
network concurrency control. In Proceedings of ACM

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 145

Symposium on Operating Systems Principles (SOSP),
2017.

[56] Junru Li, Youyou Lu, Yiming Zhang, Qing Wang, Zhuo
Cheng, Keji Huang, and Jiwu Shu. SwitchTx: scalable
in-network coordination for distributed transaction pro-
cessing. The Proceedings of the VLDB Endowment
(PVLDB), 2022.

[57] Yishuai Li, Yunfeng Zhu, Chao Shi, Guanhua Zhang,
Jianzhong Wang, and Xiaolu Zhang. Timestamp as a
Service, not an Oracle. The Proceedings of the VLDB
Endowment (PVLDB), 2024.

[58] Zhongmiao Li, Peter Van Roy, and Paolo Romano.
Speculative transaction processing in geo-replicated
data stores. Technical report, Instituto Superior Tec-
nico, Lisboa & INESC-ID, 2017.

[59] Hyeontaek Lim, Michael Kaminsky, and David G An-
dersen. Cicada: Dependably fast multi-core in-memory
transactions. In Proceedings of ACM International
Conference on Management of Data (SIGMOD), 2017.

[60] Gang Liu, Leying Chen, and Shimin Chen. Zen: a high-
throughput log-free OLTP engine for non-volatile main
memory. The Proceedings of the VLDB Endowment
(PVLDB), 2021.

[61] Wyatt Lloyd, Michael J Freedman, Michael Kamin-
sky, and David G Andersen. Don’t settle for eventual:
scalable causal consistency for wide-area storage with
COPS. In Proceedings of ACM Symposium on Operat-
ing Systems Principles (SOSP), 2011.

[62] Haonan Lu, Shuai Mu, Siddhartha Sen, and Wyatt
Lloyd. NCC: Natural Concurrency Control for Strictly
Serializable Datastores by Avoiding the Timestamp-
Inversion Pitfall. In Proceedings of USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI), 2023.

[63] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Mad-
den. Aria: A Fast and Practical Deterministic OLTP
Database. The Proceedings of the VLDB Endowment
(PVLDB), 2020.

[64] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden.
Epoch-based commit and replication in distributed
OLTP databases. The Proceedings of the VLDB En-
dowment (PVLDB), 2021.

[65] Umang Mathur and Mahesh Viswanathan. Atomicity
checking in linear time using vector clocks. In Proceed-
ings of ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), 2020.

[66] Alexander Merritt, Ada Gavrilovska, Yuan Chen, and
Dejan Milojicic. Concurrent log-structured memory
for many-core key-value stores. The Proceedings of
the VLDB Endowment (PVLDB), 2018.

[67] Christopher Mitchell, Yifeng Geng, and Jinyang Li.
Using One-Sided RDMA Reads to Build a Fast, CPU-
Efficient Key-Value Store. In Proceedings of USENIX
Conference on Annual Technical Conference (ATC),
2013.

[68] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and
Jinyang Li. Extracting more concurrency from dis-
tributed transactions. In Proceedings of USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI), 2014.

[69] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang
Li. Consolidating Concurrency Control and Consen-
sus for Commits under Conflicts. In Proceedings of
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

[70] Faisal Nawab, Vaibhav Arora, Divyakant Agrawal, and
Amr El Abbadi. Minimizing Commit Latency of Trans-
actions in Geo-Replicated Data Stores. In Proceedings
of ACM International Conference on Management of
Data (SIGMOD), 2015.

[71] Cuong DT Nguyen, Johann K Miller, and Daniel J
Abadi. Detock: High performance multi-region trans-
actions at scale. In Proceedings of the ACM on Man-
agement of Data (SIGMOD), 2023.

[72] Brian M Oki and Barbara H Liskov. Viewstamped
replication: A new primary copy method to support
highly-available distributed systems. In Proceedings
of ACM Symposium on Principles of Distributed Com-
puting (PODC), 1988.

[73] Diego Ongaro and John K Ousterhout. In search of an
understandable consensus algorithm. In Proceedings of
USENIX Conference on Annual Technical Conference
(ATC), 2014.

[74] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita
Kejriwal, Collin Lee, Behnam Montazeri, Diego On-
garo, Seo Jin Park, Henry Qin, Mendel Rosenblum,
Stephen Rumble, Ryan Stutsman, and Stephen Yang.
The RAMCloud storage system. ACM Transactions
on Computer Systems (TOCS), 2015.

[75] Ruoming Pang, Ramon Caceres, Mike Burrows,
Zhifeng Chen, Pratik Dave, Nathan Germer, Alexander
Golynski, Kevin Graney, Nina Kang, Lea Kissner, Jef-
frey L. Korn, Abhishek Parmar, Christina D. Richards,
and Mengzhi Wang. Zanzibar: Google’s Consistent,

146 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Global Authorization System. In Proceedings of
USENIX Conference on Annual Technical Conference
(ATC), 2019.

[76] Christos H. Papadimitriou. The serializability of con-
current database updates. Journal of the ACM (JACM),
1979.

[77] Karin Petersen, Mike J Spreitzer, Douglas B Terry, Mar-
vin M Theimer, and Alan J Demers. Flexible update
propagation for weakly consistent replication. In Pro-
ceedings of ACM Symposium on Operating Systems
Principles (SOSP), 1997.

[78] Soujanya Ponnapalli, Aashaka Shah, Souvik Baner-
jee, Dahlia Malkhi, Amy Tai, Vijay Chidambaram, and
Michael Wei. RainBlock: Faster transaction process-
ing in public blockchains. In Proceedings of USENIX
Conference on Annual Technical Conference (ATC),
2021.

[79] Calton Pu, Gail E Kaiser, and Norman C Hutchinson.
Split-Transactions for Open-Ended Activities. In Pro-
ceedings of International Conference on Very Large
Data Bases (VLDB), 1988.

[80] Shujian Qian and Ashvin Goel. Massively Parallel
Multi-Versioned Transaction Processing. In Proceed-
ings of USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2024.

[81] Dai Qin, Angela Demke Brown, and Ashvin Goel. Scal-
able replay-based replication for fast databases. The
Proceedings of the VLDB Endowment (PVLDB), 2017.

[82] Kun Ren, Jose M. Faleiro, and Daniel J. Abadi. Design
Principles for Scaling Multi-core OLTP Under High
Contention. In Proceedings of ACM International
Conference on Management of Data (SIGMOD), 2016.

[83] Kun Ren, Dennis Li, and Daniel J Abadi. Slog: Seri-
alizable, low-latency, geo-replicated transactions. The
Proceedings of the VLDB Endowment (PVLDB), 2019.

[84] Henry N Schuh, Weihao Liang, Ming Liu, Jacob Nel-
son, and Arvind Krishnamurthy. Xenic: SmartNIC-
Accelerated Distributed Transactions. In Proceedings
of ACM Symposium on Operating Systems Principles
(SOSP), 2021.

[85] Weihai Shen, Ansh Khanna, Sebastian Angel, Sid-
dhartha Sen, and Shuai Mu. Rolis: a software approach
to efficiently replicating multi-core transactions. In
Proceedings of ACM European Conference on Com-
puter Systems (EuroSys), 2022.

[86] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy,
Chad Whipkey, Eric Rollins, Mircea Oancea, Kyle

Littlefield, David Menestrina, Stephan Ellner, John
Cieslewicz, Ian Rae, Traian Stancescu, and Himani
Apte. F1: A distributed SQL database that scales. The
Proceedings of the VLDB Endowment (PVLDB), 2013.

[87] Dale Skeen. Nonblocking commit protocols. In Pro-
ceedings of ACM International Conference on Man-
agement of Data (SIGMOD), 1981.

[88] Yair Sovran, Russell Power, Marcos K Aguilera, and
Jinyang Li. Transactional storage for geo-replicated
systems. In Proceedings of ACM Symposium on Oper-
ating Systems Principles (SOSP), 2011.

[89] Michael Stonebraker, Samuel Madden, Daniel J Abadi,
Stavros Harizopoulos, Nabil Hachem, and Pat Helland.
The end of an architectural era:(it’s time for a complete
rewrite). In Proceedings of International Conference
on Very Large Data Bases (VLDB), 2007.

[90] Adriana Szekeres, Michael Whittaker, Jialin Li,
Naveen Kr. Sharma, Arvind Krishnamurthy, Dan R. K.
Ports, and Irene Zhang. Meerkat: multicore-scalable
replicated transactions following the zero-coordination
principle. In Proceedings of ACM European Confer-
ence on Computer Systems (EuroSys), 2020.

[91] Yacine Taleb, Ryan Stutsman, Gabriel Antoniu, and
Toni Cortes. Tailwind: fast and atomic RDMA-based
replication. In Proceedings of USENIX Conference on
Annual Technical Conference (ATC), 2018.

[92] Takayuki Tanabe, Takashi Hoshino, Hideyuki
Kawashima, and Osamu Tatebe. An analysis of con-
currency control protocols for in-memory databases
with CCBench. The Proceedings of the VLDB
Endowment (PVLDB), 2020.

[93] Robert H Thomas. A majority consensus approach to
concurrency control for multiple copy databases. ACM
Transactions on Database Systems (TODS), 1979.

[94] Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J Abadi.
Calvin: fast distributed transactions for partitioned
database systems. In Proceedings of ACM Interna-
tional Conference on Management of Data (SIGMOD),
2012.

[95] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions
in multicore in-memory databases. In Proceedings
of ACM Symposium on Operating Systems Principles
(SOSP), 2013.

[96] Nathan VanBenschoten, Arul Ajmani, Marcus Gartner,
Andrei Matei, Aayush Shah, Irfan Sharif, Alexander
Shraer, Adam Storm, Rebecca Taft, Oliver Tan, and

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 147

Andy Woods. Enabling the next generation of multi-
region applications with cockroachdb. In Proceedings
of ACM International Conference on Management of
Data (SIGMOD), 2022.

[97] Alexandre Verbitski, Anurag Gupta, Debanjan Saha,
Murali Brahmadesam, Kamal Gupta, Raman Mit-
tal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. Amazon Aurora : De-
sign considerations for high throughput cloud-native
relational databases. In Proceedings of ACM Interna-
tional Conference on Management of Data (SIGMOD),
2017.

[98] Alexandre Verbitski, Anurag Gupta, Debanjan Saha,
James Corey, Kamal Gupta, Murali Brahmadesam, Ra-
man Mittal, Sailesh Krishnamurthy, Sandor Maurice,
Tengiz Kharatishvilli, and Xiaofeng Bao. Amazon
Aurora: On Avoiding Distributed Consensus for I/Os,
Commits, and Membership Changes. In Proceedings
of ACM International Conference on Management of
Data (SIGMOD), 2018.

[99] Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis.
Query fresh: Log shipping on steroids. The Proceed-
ings of the VLDB Endowment (PVLDB), 2017.

[100] Zhaoguo Wang, Shuai Mu, Yang Cui, Han Yi, Haibo
Chen, and Jinyang Li. Scaling multicore databases
via constrained parallel execution. In Proceedings
of ACM International Conference on Management of
Data (SIGMOD), 2016.

[101] Jack Waudby, Paul Ezhilchelvan, Isi Mitrani, and Jim
Webber. A performance study of epoch-based com-
mit protocols in distributed OLTP databases. In Inter-
national Symposium on Reliable Distributed Systems
(SRDS), 2022.

[102] Xingda Wei, Rong Chen, Haibo Chen, Zhaoguo Wang,
Zhenhan Gong, and Binyu Zang. Unifying Timestamp
with Transaction Ordering for MVCC with Decentral-
ized Scalar Timestamp. In Proceedings of USENIX
Conference on Networked Systems Design and Imple-
mentation (NSDI), 2021.

[103] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing RDMA-enabled distributed
transactions: Hybrid is better! In Proceedings of
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2018.

[104] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing us-
ing RDMA and HTM. In Proceedings of ACM Sympo-
sium on Operating Systems Principles (SOSP), 2015.

[105] Chao Xie, Chunzhi Su, Cody Littley, Lorenzo Alvisi,
Manos Kapritsos, and Yang Wang. High-performance
ACID via modular concurrency control. In Proceed-
ings of ACM Symposium on Operating Systems Princi-
ples (SOSP), 2015.

[106] Erfan Zamanian, Carsten Binnig, Tim Kraska, and Tim
Harris. The end of a myth: Distributed transactions
can scale. arXiv preprint arXiv:1607.00655, 2016.

[107] Erfan Zamanian, Xiangyao Yu, Michael Stonebraker,
and Tim Kraska. Rethinking database high availability
with RDMA networks. The Proceedings of the VLDB
Endowment (PVLDB), 2019.

[108] Marek Zawirski, Nuno Preguiça, Sérgio Duarte, An-
nette Bieniusa, Valter Balegas, and Marc Shapiro.
Write fast, read in the past: Causal consistency for
client-side applications. In Proceedings of the Annual
Middleware Conference (Middleware), 2015.

[109] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres,
Arvind Krishnamurthy, and Dan R. K. Ports. Building
consistent transactions with inconsistent replication. In
Proceedings of ACM Symposium on Operating Systems
Principles (SOSP), 2015.

[110] Ming Zhang, Yu Hua, and Zhijun Yang. Motor: En-
abling Multi-Versioning for Distributed Transactions
on Disaggregated Memory. In Proceedings of USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2024.

[111] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran,
Marcos K Aguilera, and Jinyang Li. Transaction
chains: achieving serializability with low latency in
geo-distributed storage systems. In Proceedings of
ACM Symposium on Operating Systems Principles
(SOSP), 2013.

[112] Yingqiang Zhang, Chaoyi Ruan, Cheng Li, Xinjun
Yang, Wei Cao, Feifei Li, Bo Wang, Jing Fang, Yuhui
Wang, Jingze Huo, and Chao Bi. Towards cost-
effective and elastic cloud database deployment via
memory disaggregation. The Proceedings of the VLDB
Endowment (PVLDB), 2021.

[113] Zihao Zhang, Huiqi Hu, Xuan Zhou, Yaofeng Tu, Wein-
ing Qian, and Aoying Zhou. Fast Commitment for
Geo-Distributed Transactions via Decentralized Co-
coordinators. The Proceedings of the VLDB Endow-
ment (PVLDB), 2024.

[114] Zihao Zhang, Huiqi Hu, Xuan Zhou, and Jiang Wang.
Starry: multi-master transaction processing on semi-
leader architecture. The Proceedings of the VLDB
Endowment (PVLDB), 2022.

148 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[115] Yang Zhou, Xingyu Xiang, Matthew Kiley, Sowmya
Dharanipragada, and Minlan Yu. DINT: Fast In-Kernel
Distributed Transactions with eBPF. In Proceedings
of USENIX Conference on Networked Systems Design
and Implementation (NSDI), 2024.

Appendix

A Proof of Correctness

In this proof, we assume the correctness of exisiting well-
known protocols (OCC, Paxos) and mainly aim to prove two
properties: commit/rollback atomicity and rollback safety.

Informally, commit/rollback atomicity means if a transac-
tion is committed or rolled back on one shard, all its WriteSet
spanning different shards will be committed or rolled back
unanimously. There are two cases to discuss. The normal case
is that a transaction successfully finishes speculative trans-
action execution and certification, its WriteSet appears in all
relevant shards, and all shards need to unanimously commit
or roll back this WriteSet. The abnormal case is that a trans-
action does not finish speculative transaction execution or
certification, e.g., a shard times out waiting for an install call.

The rollback safety means, if a transaction is rolled back,
all transactions that depend on this transaction also have to
be rolled back. It also implies that if a transaction is replayed
or released to client, it cannot be rolled back any more. There
are mainly two cases to consider: the transaction and its de-
scendant are in the same epoch, and when they are in different
epochs.

Definition 1 (dependency). If transaction T0 writes to a key
and subsequently transaction T1 reads from the same key, we
refer to this as T1 being read-dependent on T0. Throughout
this proof, the term “dependency” specifically refers to read-
dependency.

Definition 2 (writes-i). A distributed transaction may update
data stored across many shard leaders. Throughout this proof,
the term “writes-i” refers to the data in the WriteSet for the
transaction on shard server-i.

Definition 3 (vector clock/vector watermark). Throughout
this proof, we consistently denote the vector clocks for trans-
actions T0 and T1 as (p0, p1, . . . , pn−1) and (q0,q1, . . . ,qn−1)
respectively, and FVW is (w0,w1 ... wn−1), where n is the
number of shards.

Fact 1. Mako’s distributed OCC protocol shares similarities
with widely used OCC and 2PC protocols in system designs,
and its correctness is straightforward. The core principle of
Mako’s distributed OCC protocol is that a transaction is con-
sidered to have reached a serializable point if it can satisfy
two key conditions during the commit phase, consistent with
other OCC protocols: (1) All write locks are successfully ac-
quired, and (2) No read items have been modified by other
concurrent transactions.

Fact 2. Vector clock of a transaction can reflect the serializa-
tion order on shard(s), ensured by our our distributed OCC.

Lemma 1. If transaction T1 depends on T0, then their vector
clocks satisfy: vc1 ≥ vc0.

Proof. If the transaction T1 depends on T0, in GetClock phase,
the vector clock of T0 must be included in T1’s ReadSet. This
allows the Mako to determine T1’s vector clock by selecting
the maximum of shard clocks among all vector clocks in its
ReadSet, resulting in pi ≤ qi where i ∈ [0,n−1].

Lemma 2. If T1 transitively depends on T0, then vc1 ≥ vc0.

Proof. The transitivity is obvious. Assume the chain of de-
pendency is T1, T2, ... Tk, T0. We have vc1 ≥ vc2 ≥ ...≥ vck ≥
vc0.

Fact 3. For a Paxos stream on the shard leader-i, the shard
clock-i of Paxos entries within this Paxos stream is monotoni-
cally increasing within the same epoch, until the end of the
epoch.

Lemma 3. For each shard, wi in its local view of the vector
watermark (w0, w1, ..., wn−1) consistently increments, and
represents the replication progress of shard leader-i within
the same epoch.

Proof. According to Fact 3, the shard clock-i within the same
Paxos stream consistently increases on shard-i. Combining
this with the fact that wi is picking up the minimum among
all shard clock-i from the vector clocks of replicated trans-
actions across all Paxos streams on the shard-i, we can infer
the following. (1) The replication progress (wi) of shard-i is
always advancing, and (2) If a transaction updates at least
one key on shard-i and its shard clock-i smaller than wi, the
writes-i of this transaction on the shard-i has been successfully
replicated.

Lemma 4. For an epoch e, computing its FVW is a re-entrant
and deterministic process. The FVW is the epoch’s maximum
vector watermark, i.e., for any vector watermark vw in this
epoch, f vw ≥ vw.

Proof. Given an epoch e, the FVW is computed only during
the epoch advancement in the failure recovery to ensure its
maximum. Once a shard leader receives an epoch advance-
ment request from CM, it needs to address in-flight trans-
actions (they would be the last transaction for each worker
thread within the old epoch) before advancing to the new
epoch:

Case 1 (the good case): All transactions from epoch e fin-
ished speculative certification or abort before timeout. Then
the shard replicates INFs as the end of the epoch. The finalized
watermark for this shard is INF.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 149

Case 2 (the abnormal case): Some transactions cannot fin-
ish before timeout due to contacting the failed shards or net-
work anomalies. Or all transactions finish but the shard does
not successfully replicate INFs. In such cases, at least one
Paxos stream of the shard cannot end with INF, either ending
with a no-op or with a normal transaction log entry. In both
cases, the Paxos stream in this epoch cannot grow any further;
its last log entry has the largest clock on this stream (Fact 3).
Without loss of generality, assume this clock is the lowest of
all streams on this shard. The clock is the shard’s watermark
in FVW.

In both Case 1 and 2, FVW is computed by choosing for
each shard the largest acceptable clock value (the minimum
of all streams), which is a fixed value once an epoch ends.
Computing FVW is hence a re-entrant and deterministic pro-
cess, and any other vector watermark in this epoch must be
lower than FVW.

Fact 4. All of the writes-i of transaction T have the same
vector clock.

Lemma 5. A writes-i of a transaction T is rolled back by
shard-i if and only if T ’s vector clock is not lower than FVW.

Proof. Given Lemma 4 states that the FVW is a deterministic
value for each epoch, if T ’s vector clock is not lower than
FVW, it will be rolled back. Otherwise, T would be replayed
(or on the leader becomes visible) and not be rolled back.

Lemma 6. If a transaction T partially commits (timeout on
some shards), T ’s vector clock is not lower than FVW.

Proof. A transaction T partially commits due to timeout on
some shard, and will pause the worker thread that processes
T on that shard. Assume the Paxos stream this worker threads
maps to has its last entry as T ′. T ′ has a lower shard clock
than T . In computing the FVW, FVW’s wi must be equal to
or lower than than T ′’s shard clock. This means T cannot
have a lower vector clock than FVW and thus T will be rolled
back.

Theorem 1. (Atomicity) A speculatively certified transaction
will either commit or rollback on all relevant shards.

Proof. Based on Lemma 6, if a transaction partially commits,
its vector clock will not be lower than FVW, and hence will
be rolled back. Based on Fact 4 and Lemma 5, if a transaction
is rolled back, it is rolled back on all relevant shards.

Lemma 7. A transaction in a lower epoch cannot depend on
any transaction that is in a higher epoch.

Proof. This is guaranteed by the protocol aborting a transac-
tion if it reads a higher-epoch transaction.

Lemma 8. A transaction in a higher epoch cannot depend
on any transaction that is or will be rolled back in a lower
epoch.

Proof. This is guaranteed by how our protocol processes the
new-epoch transactions:

Case 1: Before FVW is computed, transactions in a new
epoch delay accessing versions from the prior epoch e that
may be subject to potential rollback.

Case 2: Afterwards, once (e, FVW) is established, trans-
actions in the new epoch only read versions from epoch e
defined by the (e, FVW).

Theorem 2. (Rollback safety) If a transaction T0 is rolled
back, any transaction T1 that depends on T0 will also be rolled
back.

Proof. First, based on Lemma 7, T1 is either in the same epoch
or in a higher epoch than T0. Further based on Lemma 8, T1
cannot be a higher epoch, so T0 and T1 must be in the same
epoch.

Given Lemma 2, T1 has a greater vector clock than T0, i.e.,
vc1 ≥ vc0. Based on Lemma 5, vc0 is not lower than FVW.
Since vc1 ≥ vc0, vc1 is not lower than FVW. Again based on
Lemma 5, T1 will be rolled back as well.

B Shard management in detail

This section provides a detailed explanation of our shard
management approach. To enable operations such as shard
deletion, addition, and key partition reassignment, we use a
management configuration that encapsulates crucial details,
such as whether keys remain on the same server (compared
to the previous configuration), the total number of shards in
the new setup, and the identifiers of those shards.

Two key observations shape our approach: (1) cross-epoch
vector clock and vector watermark computations and compar-
isons are unnecessary in Mako, and (2) transactions in the
old epoch are not dependent on those in the new epoch. Once
Mako obtains the FVW for the old epoch, the entire database
can be treated as a read-only snapshot, serving as the initial
state with all vector clocks reset to zero (vector clocks from
higher epochs have a higher priority). This still ensures that
dependency relationships are preserved, as vector clocks only
track dependencies, and vector watermarks track replication
progress to prevent data loss.

Building on these observations, our solution treats shard
management similarly to failure recovery. The Configura-
tion Manager (CM) oversees the management process by
broadcasting a MIGRATE-START message containing the
new configuration to all shards, including those being deleted
or newly added. Upon receiving this message, shard leaders
transition to the new epoch and reject any RPCs from the old

150 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

epoch or from invalid shards (e.g., those deleted in the new
configuration).

Shard leaders then begin executing most transactions spec-
ulatively, with two constraints: (1) keys must be below their
current view of vector watermarks to avoid potential data loss,
and (2) keys scheduled for migration cannot be accessed to
ensure safety in the event of a shard failure during the shard
management. Since there is no need for all vector clocks from
the old epoch to compare with new epoch vector clocks, elim-
inating concerns about mismatches between vector clocks
across epochs.

In the background, shards in the old configuration close the
old epoch and exchange shard watermarks to compute a FVW.
This process removes the first constraint, and the computed
FVW is persisted in the CM for future retrieval, eliminating
the need for independent recomputation.

Simultaneously, each shard migrates key-value pairs to
other configured shards while retaining the original copies.
Once a shard completes its migration task, it reports back to
the CM. A background thread reclaims the original copies
only after the migration tasks for all shards are complete.
Shards marked for deletion are only responsible for closing
Paxos streams in the old epoch.

When all migration tasks are completed, the CM issues a
MIGRATE-END RPC, lifting the second constraint and en-
abling full transaction execution under the new configuration.
In the event of a shard failure during the migration procedure,
the CM initiates a failure recovery procedure, assigning a new
epoch. After recovery, the CM can safely restart migration
procedure from the beginning.

C Implementations

Multi-version and lazy memory de-allocation. As described
in the paper, Mako stores multiple versions of each key to
support rollbacks in shard failures. This is implemented as
a linked list. Each version contains a pointer to the previous
version on this key. The key index stores the pointer to the
latest version. We choose this implementation for the multi-
version to enable more efficient rollbacks. When rolling back
due to shard failures, the operation often requires reclaiming
memory for all versions that are incomparable to or above the
FVW of the old epoch, which can be very expensive. Instead,
Mako defers this operation to the future, usually the next
time the key is accessed. In our experience, we find this is an
engineering effort that can greatly reduce the rollback time.
Note that, some unnecessary rollbacks remain unavoidable
due to the lack of fine-grained dependency tracking between
individual transactions, which would incur high overhead.

Event-driven helper threads. In Mako, the limitation of
available CPUs makes it impractical to maintain a large num-
ber of busy-polling server threads simultaneously for receiv-
ing DPDK messages. As a solution, Mako adopts an event-

driven strategy for managing helper threads responsible for
processing RPC requests from other shard leaders, thereby
saving CPU resources. This approach entails temporarily sus-
pending threads and resuming them when required, which
regrettably results in additional latency. Despite this trade-
off, the event-driven method can efficiently allocate CPU
resources and preserve the overall system performance. In our
implementation, we use two polling server threads that contin-
uously receive DPDK messages and delegate those messages
to the corresponding threads for execution. Mako’s RPC relies
on eRPC [45] and a private RPC library.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 151

D Pseudocode: transaction execution lifecycle
with compression optimization

1 // Execute the transaction in a worker thread.
2 // Exclude failure recovery logic.
3

4 /**** Immutable variable definitions ****/
5 int nShards; // Number of shards
6 int nThreads; // # of worker threads per shard
7

8 // Local counter using fetch and add
9 int localCounter;

10 // Local shard index
11 int locShardID;
12

13 /**** Mutable variable definitions ****/
14 int localW; // Local shard watermark
15 // Replication progress per worker thread
16 vector <int > replicateProgress(nThreads);
17

18 // Size of compressed vector clock (e.g., 10)
19 int compSize;
20 // Local view of the compressed vector watermark
21 vector <int > compVW(compSize);
22 // Key -value store (simplified as a map)
23 map <int , ValueType > masstree;
24

25 /**** Utils ****/
26 // Get compressed shard clock index from shard ID
27 // We assume a simple mapping case
28 int getCompSIdBySId(int shardId) {
29 return shardId / (nShards / compSize);
30 }
31

32 /**** Execute a transaction T0 in Mako ****/
33 // The worker thread index
34 int threadID;
35 // The current epoch for T0
36 int currentEpoch;
37

38 // Execution phase
39 {
40 // Read() optimistically , and buffer writes
41 // ...
42 }
43

44 // Commit phase
45 {
46 {
47 // Phase1: lock keys in writeset
48 // ...
49 }
50

51 // Get the vector clock for T0
52 vector <int > compVC = getClock ();
53

54 {
55 // Phase2: Validate keys in readset
56 // ...
57 }
58

59 // Replicate transaction logs (batch for the
optimization)

60 // Inovke the callback func once a log is durable
61 asyncPaxosRep(/* resultant values of transactions */,
62 /* compVC */,
63 /* threadID */,
64 /* locShardID */,
65 callbackAsyncPaxosRep);
66

67 // Phase3: Install & Release locks
68 Install(writeSet , currentEpoch , compVC);
69 }
70

71 // Read from all relevant shards according to keys
72 // T0 always reads latest version if no failures
73 tuple <int ,vector <int >,ValueType >
74 Read(key , currentEpoch) {
75 _epoch , _compVC , _value = masstree[key][0];

76 return {_epoch , _compVC , _value };
77 }
78

79

80 // Get compressed vector clock for the transaction
81 vector <int > getClock () {
82 vector <int > _compVC(compSize);
83

84 // Merge compressed vector clocks in ReadSet
85 for (auto _cvc : readSet) {
86 for (int i=0; i<compSize; i++) {
87 _compVC[i] = MAX(_compVC[i], _cvc[i])
88 }
89 }
90

91 // Broadcast a RPC to each remote shard once in
WriteSet to increment remotes ' local counter

92 for (auto shardId: writeSet) {
93 compSId = getCompSIdBySId(shardId);
94 sclock = remoteIncrement(shardId);
95 _compVC[compSId]= MAX(_compVC[compSId], sclock);
96 }
97

98 return _compVC;
99 }

100

101 void Install(writeSet , currentEpoch , compVC) {
102 for (auto k, v: writeSet) {
103 {// Execute on all relevant shards
104 masstree[k]. insert (0,(currentEpoch , compVC , v));
105 compSId = getCompSIdBySId(locShardID);
106 // Ensure subsequent transactions observe a

larger value
107 int delta = compVC[compSId] - localCounter;
108 if (delta > 0)
109 localCounter.fetch_add(delta);
110 }
111 }
112 }
113

114 void callbackAsyncPaxosRep(int threadID , vector <int >
compVC , int locShardID , const string&
resultantValue) {

115 compSId = getCompSIdBySId(locShardID);
116 replicateProgress[threadID] = compVC[compSId];
117 localW = MIN(replicateProgress);
118 compVW[compSId] = MIN(compVW[compSId], localW);
119

120 {
121 // Exchange shard watermarks periodically to

update compVW
122 // ...
123 }
124

125 recvQueues.push_back ((resultantValue , compVC));
126

127 // Replay on shard followers
128 while (! recvQueues.empty()) {
129 bool safeToReplay = true;
130 for (int i=0; i<compSize; i++) {
131 if (recvQueues.front().compVC[i] > compVW[i]) {
132 safeToReplay = false;
133 break;
134 }
135 }
136

137 if (! safeToReplay) break;
138

139 // It is safe to return back the client and replay
140 replay(recvQueues.front ());
141 recvQueues.pop_front ();
142 }
143 }

152 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	Introduction
	Background and motivation
	Limitations of existing designs

	Challenges and key ideas
	Design of Mako
	Overview
	Speculative execution and certification
	Replication with Paxos streams
	Record-Replay on the followers

	Handling failures in speculative 2PC
	Why is this hard?
	Mako's solution

	Practical considerations
	Scalability with more shards
	Shard management
	Quick failure recovery

	Evaluation
	Experimental setup
	Throughput and scalability
	Latency
	Impact of cross-shard transactions
	Leader placement
	Effect of concurrency on throughput
	Scalability of vector clocks
	Single-shard failure recovery
	Factor analysis

	Further discussion
	Related work
	Conclusion
	Proof of Correctness
	Shard management in detail
	Implementations
	Pseudocode: transaction execution lifecycle with compression optimization

